Internal Friction and Young's Modulus of 9Al2O3 2B2O3 Whisker Reinforced Aluminum Matrix Composite

Abstract:

Article Preview

Anelastic behavior of a 9Al2O3·2B2O3 (AlBw) whisker reinforced aluminum composite has been examined through the measurements of the dynamic Young’s modulus and internal friction over a temperature range of 25 to 500°C at frequencies of 0.01, 0.05 and 0.1 Hz. A standard servo-hydraulic mechanical testing machine equipped with an infrared lamp heater was employed, but the dynamic measurement system therein was especially designed by assembling a scanning laser extensometer and a frequency response analyzer for detecting the amplitude and phase lag of strain in response to a sinusoidal time-varying stress. Two peaks of internal friction were observed over the ranges 100 to 250°C (LT peak) and 250 to 400°C (HT peak), together with marked decreases in the dynamic Young's modulus in the same temperature ranges. From a quantitative analysis of the experimental data, it is concluded that the HT peak phenomenon is due to grain-boundary relaxation, whereas the LT peak phenomenon is ascribable to the relaxation caused by stress-directed interfacial diffusion of Al atoms along the whisker-matrix interface.

Info:

Periodical:

Materials Science Forum (Volumes 539-543)

Main Theme:

Edited by:

T. Chandra, K. Tsuzaki, M. Militzer , C. Ravindran

Pages:

997-1003

DOI:

10.4028/www.scientific.net/MSF.539-543.997

Citation:

C. S. Kang et al., "Internal Friction and Young's Modulus of 9Al2O3 2B2O3 Whisker Reinforced Aluminum Matrix Composite", Materials Science Forum, Vols. 539-543, pp. 997-1003, 2007

Online since:

March 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.