Fabrication of Al2O3 Microtubes Using Carbon Fibers and Al/ Al2O3 Mixed Powder in Solid-Vapor Reaction (SVR) Process


Article Preview

In this work, we report on the fabrication process of alumina (Al2O3) microtubes using carbon fibers and aluminum/alumina (Al/Al2O3) mixed powder via a solid-vapor (SV) reaction. Al and Al2O3 (α-Al2O3) were mixed in a 1:1 molar ratio, and heated to generate an AlO vapor. The carbon fibers were heat-treated in the pre-carburized Al2O3 crucible at 1400°C for 9h with a heating rate of 5°C/min in flowing argon (Ar) gas at 200 ml/min. Any carbon residues remaining in the core after the heat treatment at 1400°C were burned off by subsequent calcination at 700°C for 3 h in air. A post-heat treatment was conducted to convert the product to Al2O3. As a result, Al2O3 microtubes are successfully synthesized via the SV reaction between carbon fibers and Al/Al2O3 mixed powder. The TGA study shows that the AlO vapor is generated at temperatures above 750°C. As the calcination temperature increases, carbon residues and Al4C3 peaks disappear in XRD patterns. Al2O3 microtubes are synthesized at 1200°C, and show thinner wall thickness and undulating outer and inner surfaces arising from the partial decomposition of Al2O3 microtubes.



Materials Science Forum (Volumes 544-545)

Edited by:

Hyungsun Kim, Junichi Hojo and Soo Wohn Lee




S. W. Myoung et al., "Fabrication of Al2O3 Microtubes Using Carbon Fibers and Al/ Al2O3 Mixed Powder in Solid-Vapor Reaction (SVR) Process", Materials Science Forum, Vols. 544-545, pp. 749-752, 2007

Online since:

May 2007




[1] J.S. Oyansky and C.E. Scoot: Am. Ceram. Soc. Bull. Vol. 72 (1992), p.1674.

[2] J.F. Zievers and P. Eggersted: Am. Ceram. Soc. Bull. Vol. 70 (1991), p.108.

[3] Y. Seki, S. Kose, T. Kodama, M. Kadota, T. Ogura, D. Tanimoto and I. Matsubara: J. Ceram. Soc. Jpn. Vol. 96 (1988), p.920.

[4] G.S. Grader and L. Zuri: J. Am. Ceram. Soc. Vol. 76 (1993), p.1809.

[5] E. Limger and R. Raj: J. Am. Ceram. Soc. Vol. 70 (1987), p.843.

[6] P.A. Smith and R.A. Haber: J. Am. Ceram. Soc. Vol. 75 (1992), p.290.

[7] M.J. Ledoux, J. Guille, S. Hantzer and D. Dubots: US Patent No. 4914070 (Pechiney Electro- metallurgie, 1990).

[8] M.J. Ledoux, S. Hantzer, C. Pham-huu, J.L. Guille and M.P. Desaneaux : J. Catal. Vol. 114 (1988), p.176.

[9] N. Keller, C. Pham-huu, S. Roy, M.J. Ledoux, C. Estournes and J.L. Guill: J. Mater. Sci. Vol. 34 (1999), p.3189.

[10] J.W. Kim, S.S. Lee, D.H. Park, Y.G. Jung, J.H. Lee and C.Y. Jo: Key. Eng. Mater. Vol. 287 (2005), p.220.

[11] C. Vix-Guterl, I. Alix, P. Gibot and P. Ehrburger: Appl. Surf. Sci. Vol. 210 (2003), p.329.

[12] J. W. Kim, S. S. Lee, Y. G. Jung, B. G. Choi, C. Y. Jo and U. Paik: J. Mater. Res. Vol. 20 (2004), p.409.

[13] L. P. Cook, in: Alumina Chemicals: Science and Technology Handbook, edited by L.D. Hart (The American Ceramic Society, Inc., Westerville, Ohio, 1990), p.52.

[14] M. Ohta and K. Moria: ISIJ Inter. Vol. 42 (2002), p.474.

[15] J.K. Yu, S. Ueno, H.X. Li and K. Hiraghchi: J. Eur. Ceram. Soc. Vol. 19 (1999), p.2843. (a) (b) (c).