Atomic Partitioning of Platinum and Ruthenium in Advanced Single Crystal Ni-Based Superalloys

Abstract:

Article Preview

The elemental partitioning characteristics of advanced single crystal Ni-base superalloys containing additions of both Pt and Ru have been investigated using atom probe tomography. Detailed microanalysis revealed Ru additions partitioned preferentially to the disordered matrix, whereas Pt additions tended to partition to the ordered intermetallic γ′ precipitates. The partitioning characteristics of three nominally similar alloys with systematic variations in the levels of Cr, Ru and Pt were investigated. For this particular set of experimental alloys, minor changes in the partitioning characteristics of the constituent elements could be attributed to additions of Cr and Ru. The preferential site occupancy of Pt within the L12 lattice was also statistically quantified with ALCHEMI (atomic site location by channelling enhanced microanalysis). In contrast to the atomic partitioning characteristics of Ru, Pt exhibited a tendency to occupy the Ni sublattice sites in the γ′ structure.

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.

Pages:

1187-1194

DOI:

10.4028/www.scientific.net/MSF.546-549.1187

Citation:

S. Tin et al., "Atomic Partitioning of Platinum and Ruthenium in Advanced Single Crystal Ni-Based Superalloys", Materials Science Forum, Vols. 546-549, pp. 1187-1194, 2007

Online since:

May 2007

Export:

Price:

$35.00

[1] Murakami, H., Honma, T., Koizumi, Y., and Harada, H. in Superalloys 2000. Warrendale, PA: TMS. pp.747-756.

[2] Caron, P. in Superalloys 2000. Warrendale, PA: TMS. pp.737-746.

[3] O'Hara, K., Walston, W.S., Ross, E.W., and Darolia, R., in US Patent #5482789. (1996).

[4] Nicholls, J.R. in Parsons 2003. Dublin, Ireland: Maney. pp.803-826.

[5] Walston, W.S., O'Hara, K.S., Ross, E.W., Pollock, T.M., and Murphy, W.H. in Superalloys 1996. Warrendale, PA: TMS. pp.27-34.

[6] Erickson, G.L. in Superalloys 1996. Warrendale, PA: TMS. pp.35-44.

[7] Yoon, K.E., Isheim, D., Noebe, R.D., and Seidman, D.N., Interface Science, 2001. 9: pp.249-255.

[8] Warren, P.J., Cerezo, A., and Smith, G.D.W., Materials Science and Engineering, 1998. 250A: pp.88-92.

[9] Blavette, D., Cadel, E., and Deconihout, B., Materials Characterization, 2000. 44: pp.133-157.

[10] Blavette, D., Caron, P., and Khan, T. in Superalloys 1988. Warrendale, PA: TMS. pp.305-314.

[11] Rusing, J., Wanderka, N., Czubayko, U., Naundif, V., Mukherji, D., and Rosler, J., Scripta Mat., 2002. 46: pp.235-240.

[12] Tin, S., Yeh, A.C., Ofori, A.P., Reed, R.C., Babu, S.S., and Miller, M.K. in Superalloys 2004. Warrendale, PA: TMS. pp.735-742.

[13] Reed, R.C., Yeh, A.C., Tin, S., Babu, S.S., and Miller, M.K., Scripta Mater., 2004. 51: pp.327-331.

[14] Ofori, A.P., Humphreys, C.J., Tin, S., and Jones, C.N. in Superalloys 2004. Warrendale, PA: TMS. pp.787-794.

[15] Yeh, A.C. and Tin, S. in Parsons 2003: Dublin, Ireland: Maney Publishing. pp.673-686.

[16] Zhang, J.X., Murakamo, T., Koizumi, Y., Kobayashi, T., and Harada, H., Acta. Materialia, 2003. 51: pp.5073-5081.

In order to see related information, you need to Login.