Effect of Temperature on Formation of Borides in TLP Joint of a Kind of Nickel-Base Single Crystal Superalloy

Abstract:

Article Preview

a kind of as-cast nickel-base single crystal superalloy was TLP bonded using Ni-Cr-B amorphous foil at different temperatures. Special attention is paid to the formation of boride in diffusion zone of TLP joints at different conditions. The chemical composition and microstructure of borides were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). At different bonding temperature, M3B2 precipitates appear distinct morphologies. At 1200°C, both blocky and plate-like borides formed owing to the diffusion of boron atoms into base metal and precipitation during the cooling process. At 1230°C or above, due to the diffusion of boron atoms the constitutional liquation of original γ/γ′ eutectics in the base metal occurs and borides formed when the system was cooled to room temperature. The analysis of TEM results reveals that M3B2 has a tetragonal structure and is rich in Mo, W, and Cr elements.

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.

Pages:

1245-1248

Citation:

J.D. Liu et al., "Effect of Temperature on Formation of Borides in TLP Joint of a Kind of Nickel-Base Single Crystal Superalloy", Materials Science Forum, Vols. 546-549, pp. 1245-1248, 2007

Online since:

May 2007

Export:

Price:

$38.00

[1] G.S. Hoopin and T.F. Berry: Weld. J. Vol. 49(1970), p. 505s.

[2] D.S. Duvall and W.A. Owczarski: Weld. J. Vol. 53(1974), p.203.

[3] X. Wu, H. Li, R.S. Chandel, F. Lan and H.P. Seow: J. Mater. Sci. Lett., Vol. 19(2000), p.319.

[4] Y. Zheng, L. Zhao and K. Tangri: J. Mater. Sci. Vol. 28(1993), p.823.

[5] W.F. Gale and Y. Guan: Metall. and Mater. Trans. A Vol. 27A(1996), p.3621.

[6] K. Nishimoto, K. Saida, D. Kim, S. Asai, Y. Furukawa et al.: Weld. World Vol. 41(1998), p.121.

[7] W. Li, T. Jin, X.F. Sun, Y. Guo, H.R. Guan, Z.Q. Hu: Acta Metall. Sinica Vol. 37(2001), p.1165.

[8] W.F. Gale and X. Wen: Mater. Sci. Tech. Vol. 17(2001), p.459.

[9] Y.H. Xie, W. Mao, X.F. Liu and M.G. Yan: Trans. Nonfer. Met. Soc. China Vol. 13(2003), p.885.

[10] X.H. Li, Q.P. Zhong and C.X. Cao: J. Aeronautical Mater. Vol. 23(2003), p.1.

[11] W. Li, T. Jin, X.F. Sun, Y. Guo, H.R. Guan and Z.Q. Hu: Scripta Mater. Vol. 48(2003), p.1283.

[12] Y. R. Zheng and D. T. Zhang: Color Metallographic Investigation of Superalloys and Steels (National Defence Industry Press, Beijing 1999).

[13] X. Huang, M.C. Chaturvedi and N.L. Richards: Metall. Mater. Trans. A Vol. 27(1996), p.785.

[14] S. Benhaddad, N.L. Richards, et al., Superalloys, edited by T.M. Pollock et al., TMS (2000), p.703.

[15] O.A. Ojo, N.L. Richards and M.C. Chaturvedi: Scripta Mater. Vol. 51(2004), p.141.

[16] M.C. Chaturvedi, Y.L. Wang et al.: Acta Metall. Sinica (English Letter) Vol. 18(2005), p.24.

[17] D.H. Kim, D.H. Ye, J.H. Lee, et al.: Acta Metall. Sinica (English Letter) Vol. 18(2005), p.33.

[18] J.J. Pepe and W.F. Savage, Weld. J. Vol. 46(1967), p. 41s ab Fig. 5 Relationships between area fractions of liquation and bonding time (a) and bonding temperatures (b).