Quantification of High Temperature Strength of Nickel-Based Superalloys

Abstract:

Article Preview

The strength of nickel-based superalloys usually consists of solid solution strengthening from the gamma matrix and precipitation hardening due to the gamma' and/or gamma" precipitates. In the present work, a model was developed to calculate the high temperature strength of nickel-based superalloys, where the temperature dependence of each strengthening contribution was accounted for separately. The high temperature strength of these alloys is not only a function of microstructural changes in the material, but the result of a competition between two deformation modes, i.e. the normal low to mid temperature tensile deformation and deformation via a creep mode. Extensive validation had been carried out during the model development. Good agreement between calculated and experimental results has been achieved for a wide range of nickel-based superalloys, including solid solution alloys and precipitation-hardened alloys with different type/amount of precipitates. This model has been applied to two newly developed superalloys and is proved to be able to make predictions to within useful accuracy.

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.

Pages:

1319-1326

Citation:

Z. L. Guo et al., "Quantification of High Temperature Strength of Nickel-Based Superalloys", Materials Science Forum, Vols. 546-549, pp. 1319-1326, 2007

Online since:

May 2007

Export:

Price:

$38.00

[1] E. Nembach, J. Pesicka, E. Langmaack, Mater. Sci. Eng. A, A362 (2003) 264-273.

[2] X. Li, A.P. Miodownik, N. Saunders, J. Phase Equilibria, 22 (3) (2001) 247-253.

[3] N. Saunders, S. Kucherenko, X. Li, A.P. Miodownik, J.P. Schillé, J. Phase Equilibria, 22 (4) (2001) 463-669.

[4] F.B. Pickering, The Metallurgical Evolution of Stainless Steels: A Discriminative Section, ASM, The Metals Society, London, 1979, 1-42.

[5] K.J. Irvine, T. Gladman, F.B. Pickering, J. Iron Steel Inst., 207 (7) (1969) 1017-1028.

[6] E.O. Hall, Yield Point Phenomena in Metals and Alloys, New York, Plenum, (1970).

[7] Y. Mishima, S. Ochiai, N. Hamao, M. Yodogawa, T. Suzuki, Trans. Jpn. Inst. Met., 27 (9) (1986) 656-664.

[8] X. Li, A.P. Miodownik, N. Saunders, Mater. Sci. Technol., 18 (2002) 861-868.

[9] N. Saunders, Z. Guo, X. Li, A.P. Miodownik, J.P. Schillé, JOM, 55 (12) (2003) 60-65.

[10] D. Raynor, J.M. Silcock, Metal Science Journal, 4 (1970) 121-130.

[11] C T Sims, N S Stoloff, W C Hagel, Superalloys� , John Wiley Sons, New York, 1987, 66-78.

[12] B. Reppich, P. Schepp, G. Wehner, Acta Metall., 30 (1982) 95-104.

[13] W. Hüther, B. Reppich, Z. Metallkde., 69 (1978) 628-634.

[14] B. Reppich, Acta Metall., 30 (1982) 87-94.

[15] A.P. Miodownik, N. Saunders, in Applications of Thermodynamics in the Synthesis and Processing of Materials, eds. P. Nash and B. Sundman, Warrendale, PA: TMS, 1995, 91.

[16] B. Reppich, W. Kühlein, G. Meyer, D. Puppel, M. Schulz, G. Schumann, Mater. Sci. Eng., 83 (1986) 45.

[17] D.J. Chellman, A.J. Luévano, A.J. Ardell, Strength of Metals and Alloys, London, Freund Publishing, 1991, 537.

[18] J.M. Oblak, D.S. Duvall, D.F. Paulonis, Mat. Sci. Eng., 13 (1974) 51.

[19] C. Slama et al., J. Mater. Res., 12, 2299.

[20] R.E. Smallman, Modern Physical Metallurgy, London, Butterworths, 1985, 392.

[21] M.C. Chaturvedi, Y. Han, in Superalloy 718-Metallurgy and Applications, ed. E.A. Loria, Warrendale, PA, TMS, 1989, 489.

[22] M. Sundararaman P. Mukhopadhyay and S. Banerjee, Metall. Trans. A, 23A (1992) (2015).

[23] E. Guo, F. Xu, E.A. Loria, in Superalloys 718, 625 and Various Derivatives, ed. E.A. Loria, Warrendale, PA, TMS, 1991, 397.

DOI: https://doi.org/10.7449/1991/superalloys_1991_397_408

[24] Adv. Mater. Proc., 156 (6) (1999) 80.

[25] B. Wilshire, H.E. Evans, Creep of Metals and Alloys, Inst. Metals, (1985).

[26] X.S. Xie, G.L. Chen, P.J. McHugh, J.K. Tien, Scripta Metall., 16 (1982) 483.

[27] H. Burt, J.P. Dennison, B. Wilshire, Metal Science, 13 (1979) 295.

[28] R. Lagneborg, B. Bergman, Metal Science, 10 (1976) 20.

[29] W.J. Evans, G.F. Harrison, Metal Science, 10 (1976) 307.

[30] C.R. Barrett, O.D. Sherby, Trans. Met. Soc. AIME, 233 (1965) 1116.

[31] H.E. Evans, G. Knowles, Acta Metall., 25 (1977) 963.

[32] H.E. Evans, G. Knowles, Strength of Metals and Alloys, eds. P. Haasen et al., (Oxford: Pergamon Press, 1979), 301.

[33] A.P. Miodownik, X. Li, N. Saunders, J. -P. Schille, Parsons 2003: Engineering Issues in Turbine Machinery, Power Plant and Renewables, eds. A. Strang et al., (London: Inst. MMM, 2003), 779.

[34] A.P. Miodownik, CALPHAD, 2 (1978) 207.

[35] W.J. Evans, G.F. Harrison, Metal Science, 13 (1979) 641.

[36] R.W. Lund, W.D. Nix, Acta Met., 24 (1976) 469.

[37] G.B. Thomas, T.B. Gibbons, in Superalloys 1980, eds. J.K. Tien et al., TMS, 1980, 699.

[38] O. Ajaja, T.E. Howson, S. Purushothaman, J.K. Tien, Mater. Sci. Eng., 44 (1980) 165.

[39] H.L. Eiselstein, D.J. Tillack, in Superalloys 718, 625 and Various Derivatives, ed. E.A. Loria, TMS, 1991, 1.

DOI: https://doi.org/10.7449/1991/superalloys_1991_1_14

[40] Special Metals Product Handbook of High-Peformance Alloys, Publication No. SMC-035, Huntington, WV: Special Metals Corporation, (2001).

[41] S. Zhao, X. Xie, G.D. Smith, S.J. Patel, Mater. Sci. Eng. A, A355 (2003) 96.

[42] F. Tancret, T. Sourmail, M.A. Yescas, R.W. Evans, C. McAleese, L. Singh, T. Smeeton, H.K.D.H. Bhadeshia, Mater. Sci. Technol., 19 (2003) 296.