Hydrogen's Absorption/Desorption Behavior in Gaseous-Phase Charged Duplex-Annealed Ti-6Al-4V Alloy

Abstract:

Article Preview

Ti-6Al-4V alloy has proven to be technically superior and cost-effective materials for a wide variety of aerospace, industrial, marine and commercial applications. The mechanical properties of Ti-6Al-4V are very sensitive to the microstructure obtained after the thermo-mechanical treatment. The duplex structures provide good tensile ductility, fatigue strength, resistance to microcrack growth and crack initiation, and are often used in demanding fatigue critical tasks. However, although Ti-6A-4V is considered to be reasonably resistance to chemical attack, severe problems can arise when it comes in contact with hydrogen-containing environments due to its susceptibility to hydrogen embrittlement. The objective of this paper is to investigate the absorption and desorption behavior of external hydrogen on a duplex-annealed Ti-6Al-4V alloy. While investigating the desorption profile, we seek to better understand the thermodynamics and the kinetic nature of the interaction between traps and hydrogen atoms, with specific emphasis on the investigation of the impact of these interactions on the microstructure of the studied aerospace applicative titanium alloy. In order to achieve these goals, thermal desorption spectroscopy (TDS) was applied and the data obtained from this analysis was supported by a variety of other experimental techniques, such as LECO hydrogen determinator, XRD and microstructure investigations by means of optic and electronic microscopy. Hydrogen was found to influence significantly the microstructure of the alloy. The process of hydrogen evolution was found to be a very complex process, being affected mainly by the phase transformations that may occur during the thermal analysis.

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.

Pages:

1367-1372

Citation:

E. Tal-Gutelmacher et al., "Hydrogen's Absorption/Desorption Behavior in Gaseous-Phase Charged Duplex-Annealed Ti-6Al-4V Alloy", Materials Science Forum, Vols. 546-549, pp. 1367-1372, 2007

Online since:

May 2007

Export:

Price:

$38.00

[1] F. H. Froes, D. Eylon and H. Bomberger, in: Titanium Technology: Present Status and Future Trends, edited by F. H. Froes, D. Eylon and H. Bomberger, TDA, Dayton, OH, (1985).

[2] F. H. Froes, T. L. Yau and H. G. Weidenger, in: Titanium, Zirconium and Hafnium, - Materials Science and Technology - Structure and Propoerties of Nonferrous Alloys, edited by K. H. Matucha, VCH Weinheim, FRG, (1996), p.401.

[3] R. Boyer, G. Welsch and E. W. Collings, in: Materials Properties Handbook - Titanium Alloys, edited by R. Boyer, G. Welsch and E. W. Collings, Materials Park, OH, ASM, (1990).

[4] D. N. Williams, F. R. Schwarz and R. I. Jaffee, Trans. Amer. Co. Metals Vol. 51 (1959), p.802.

[5] D. N. Williams, J. Inst. Metals Vol. 91 (1962-63), p.147.

[6] G. F. Pittinato and S. F. Frederick, Metall. Trans. Vol. 1 (1970), p.3241.

[7] D. A. Meyn Met. Trans. Vol. 2 (1972), p.2302.

[8] D. A. Meyn Met. Trans. Vol. 5 (1974), p.2405.

[9] H. G. Nelson, D. P. Williams and J. E. Stein, Met. Trans. Vol. 3 (1972), p.469.

[10] A. Vassel, J. Less-Common Met. Vol. 69 (1980), p.293.

[11] H. Hoeg, B. Hollund and I. W. Hall, Metal. Sci. Vol. 14 (1980), p.50.

[12] G. H. Koch, A. J. Bursle, R. Liu and N. Pugh, Met. Trans. A. Vol. 12 (1981), p.1833.

[13] N. R. Moody and W. W. Gerberich, Met. Trans. A. Vol. 13 (1982), p.1055.

[14] H. G. Nelson, in: Hydrogen Embrittlement - Treatise on Materials Science and Technology - Embrittlement of Engibeering Alloys, edited by C. L. Briant and S. K. Baberji, Academic Press, New York, NY, (1983), p.275.

DOI: https://doi.org/10.1016/b978-0-12-341825-8.50014-3

[15] D. Hardie and S. Ouyang, Corr. Sci. Vol. 41 (1999), p.155.

[16] E. Tal-Gutelmacher and D. Eliezer, Mat. Trans. Vol 45(5) (2004), p.1594.

[17] E. Tal-Gutelmacher and D. Eliezer, JOM Vol. 57(9) (2005), p.46.

[18] J. P. Immarigeon, R. T. Holt, A. K. Koul, L. Zhao, W. Wallace and J. C. Beddoes, Mat. Characterization Vol. 35 (1995), p.41.

[19] R. R. Boyer, Mat. Sci. Eng. A. Vol. 213 (1996), p.103.

[20] W. W. Bowen and D. Clark in: Titanium Science and Technology, edited by G. Luterjing, U. Zwicker and W. Bunk, Deutsche Gesellschaft fur Metallkunde e.V., Germany, Vol. 4 (1985), p.1737.

[21] G. Lutjering in: Titanium '98, edited by L. Zhou, D. Eylon, G. Lutjering and C. Ouchi, International Academic Publishers, Beijing, (1999), p.1.

[22] J. Lindemann and L. Wagner, in: Titanium '98, edited by L. Zhou, D. Eylon, G. Lutjering and C. Ouchi, International Academic Publishers, Beijing, (1999), p.570.

[23] E. Tal-Gutelmacher, D. Eliezer and D. Eylon: Mater. Sci. Eng. A. Vol. 381 (2004), p.230.

[24] D. Eliezer, E. Tal-Gutelmacher, C. E. Cross and T. Boellinghaus: Mater. Sci. Eng. A. Vol. 421 (2006), p.200.

[25] H. E. Kissinger: Anal. Chem. Vol. 29 (1957), p.1702.

[26] A. Takasaki, Y. Furuya, K. Ojima, Y. Taneda: J. Alloys & Comp. Vol. 224 (1995), p.269.

Fetching data from Crossref.
This may take some time to load.