Theoretical Prediction of Ternary Site Occupancies in ZrCr2 and NbCr2 Laves Phases

Abstract:

Article Preview

Site occupancies of ternary additions (Ti, V, and W) in the C15 ZrCr2 and NbCr2 Laves phases were predicted theoretically by first-principles calculations based on density functional theory. The results suggest that Ti preferentially occupies the Zr and Nb sites in ZrCr2 and NbCr2, respectively. V and W substitute the Cr sites in both ZrCr2 and NbCr2. The calculations of heats of formation also show that the occupancy of W on the Cr sites and of Ti on the Zr sites stabilize ZrCr2. For NbCr2, the occupancy of V on the Cr sites and of Ti on the Nb sites increases the phase stability.

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.

Pages:

1451-1454

Citation:

Q. Yao et al., "Theoretical Prediction of Ternary Site Occupancies in ZrCr2 and NbCr2 Laves Phases", Materials Science Forum, Vols. 546-549, pp. 1451-1454, 2007

Online since:

May 2007

Export:

Price:

$38.00

[1] A. Keitz and G. Sauthoff: Intermetallics Vol. 10 (2002), p.497.

[2] T. Takasugi, S. Hanada and M. Yoshida: Mater. Sci. Eng. A Vol. 192-193 (1995), p.805.

[3] C.T. Liu, J.H. Zhu, M.P. Brady, C.G. Mckamey and L.M. Pike: Intermetallics Vol. 9-11(2000), p.1119.

[4] T. Ohta, Y. Kaneno, H. Inoue, S. Hanada and T. Takasugi: Metallurg. Mater. Trans. A: Phys. Metallurg. Mater. Sci. A Vol. 36 (2005), p.583.

[5] T. Takasugi, M. Yoshida and S. Hanada: Acta Mater. Vol. 44 (1996), p.669.

[6] N.I. Medvedeva, Y.N. Gornostyrev, D.L. Novikov, O.N. Mryasov and A.J. Freeman: Acta Mater. Vol. 46 (1998), p.3433.

[7] C.Y. Geng, C.Y. Wang and T. Yu: Acta Mater. Vol. 52 (2004), p.5427.

[8] Y. Song, Z.X. Guo and R. Yang: Journal of Light Metals Vol. 2(2002), p.115.

[9] K. Schwarz, P. Blaha and G.K.H. Madsen: Comput. Phys. Commun. Vol. 147 (2002), p.71.

[10] J. P. Perdew, K. Burke and M. Ernzerhof: Phy. Rev. Lett. Vol. 77 (1996), p.3865.

[11] P. Villars: Pearson's handbook of crystallographic data for intermetallic phases, 2nd ed. (Materials Park, Ohio 1991).

[12] D. Shaltiel, I. Jacob and D. Davidov: J. Less-Common Metals Vol. 53 (1977), p.117.

[13] D.J. Thoma and J.H. Perepezko: Mater Sci Eng A Vol. 156 (1992), p.97.

[14] P.K. Khowash, D.L. Price and B.R. Cooper: Phy. Rev. B Vol. 47 (1993), p.9884.

[15] F. Chu, Q. Zhu, D.J. Thoma and Mitchell TE: Phil Mag A Vol. 78 (1998), p.551.

[16] F. Chu, D.J. Thoma, P.G. Kotula, S. Gerstl, T.E. Mitchell, I.E. Anderson, J. Bentley: Acta Mater Vol. 46 (1998), p.1759.

[17] P.G. Kotula, I.M. Anderson, F. Chu, D.J. Thoma, J. Bentley and T.E. Mitchell: Mater Res. Soc. Symp. Proc. Vol. 460 (1997), p.617.

[18] H. Okaniwa, D. Shindo, M. Yoshida and T. Takasugi: Acta Mater Vol. 47 (1999), p. (1987).

[19] C.L. Fu and J. Zou: Acta Mater. Vol. 44 (1996), p.1471.

[20] J.H. Zhu, L.M. Pike, C.T. Liu, P.K. Liaw: Acta Mater Vol. 47 (1999), p. (2003).

Fetching data from Crossref.
This may take some time to load.