Theoretical Prediction of Ternary Site Occupancies in ZrCr2 and NbCr2 Laves Phases


Article Preview

Site occupancies of ternary additions (Ti, V, and W) in the C15 ZrCr2 and NbCr2 Laves phases were predicted theoretically by first-principles calculations based on density functional theory. The results suggest that Ti preferentially occupies the Zr and Nb sites in ZrCr2 and NbCr2, respectively. V and W substitute the Cr sites in both ZrCr2 and NbCr2. The calculations of heats of formation also show that the occupancy of W on the Cr sites and of Ti on the Zr sites stabilize ZrCr2. For NbCr2, the occupancy of V on the Cr sites and of Ti on the Nb sites increases the phase stability.



Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.




Q. Yao et al., "Theoretical Prediction of Ternary Site Occupancies in ZrCr2 and NbCr2 Laves Phases", Materials Science Forum, Vols. 546-549, pp. 1451-1454, 2007

Online since:

May 2007




[1] A. Keitz and G. Sauthoff: Intermetallics Vol. 10 (2002), p.497.

[2] T. Takasugi, S. Hanada and M. Yoshida: Mater. Sci. Eng. A Vol. 192-193 (1995), p.805.

[3] C.T. Liu, J.H. Zhu, M.P. Brady, C.G. Mckamey and L.M. Pike: Intermetallics Vol. 9-11(2000), p.1119.

[4] T. Ohta, Y. Kaneno, H. Inoue, S. Hanada and T. Takasugi: Metallurg. Mater. Trans. A: Phys. Metallurg. Mater. Sci. A Vol. 36 (2005), p.583.

[5] T. Takasugi, M. Yoshida and S. Hanada: Acta Mater. Vol. 44 (1996), p.669.

[6] N.I. Medvedeva, Y.N. Gornostyrev, D.L. Novikov, O.N. Mryasov and A.J. Freeman: Acta Mater. Vol. 46 (1998), p.3433.

[7] C.Y. Geng, C.Y. Wang and T. Yu: Acta Mater. Vol. 52 (2004), p.5427.

[8] Y. Song, Z.X. Guo and R. Yang: Journal of Light Metals Vol. 2(2002), p.115.

[9] K. Schwarz, P. Blaha and G.K.H. Madsen: Comput. Phys. Commun. Vol. 147 (2002), p.71.

[10] J. P. Perdew, K. Burke and M. Ernzerhof: Phy. Rev. Lett. Vol. 77 (1996), p.3865.

[11] P. Villars: Pearson's handbook of crystallographic data for intermetallic phases, 2nd ed. (Materials Park, Ohio 1991).

[12] D. Shaltiel, I. Jacob and D. Davidov: J. Less-Common Metals Vol. 53 (1977), p.117.

[13] D.J. Thoma and J.H. Perepezko: Mater Sci Eng A Vol. 156 (1992), p.97.

[14] P.K. Khowash, D.L. Price and B.R. Cooper: Phy. Rev. B Vol. 47 (1993), p.9884.

[15] F. Chu, Q. Zhu, D.J. Thoma and Mitchell TE: Phil Mag A Vol. 78 (1998), p.551.

[16] F. Chu, D.J. Thoma, P.G. Kotula, S. Gerstl, T.E. Mitchell, I.E. Anderson, J. Bentley: Acta Mater Vol. 46 (1998), p.1759.

[17] P.G. Kotula, I.M. Anderson, F. Chu, D.J. Thoma, J. Bentley and T.E. Mitchell: Mater Res. Soc. Symp. Proc. Vol. 460 (1997), p.617.

[18] H. Okaniwa, D. Shindo, M. Yoshida and T. Takasugi: Acta Mater Vol. 47 (1999), p. (1987).

[19] C.L. Fu and J. Zou: Acta Mater. Vol. 44 (1996), p.1471.

[20] J.H. Zhu, L.M. Pike, C.T. Liu, P.K. Liaw: Acta Mater Vol. 47 (1999), p. (2003).