First-Principles Study on Initial Oxidation of NiAl(110)

Abstract:

Article Preview

The oxygen atom adsorption at Al-Al bridge, Ni-Ni bridge, Al top and Ni top site on the NiAl(110) surface by first-principles method within density functional theory has been studied in this paper. It has been found that the preferred adsorption position of the oxygen was at the Al-Al bridge site then the Ni-Ni bridge site. The charge transfer took place obviously between the O atom and the nearest Al atoms, but no charge transferred from the nearest Ni atoms to O atom. For the Al-Al (Ni-Ni) bridge adsorption site, the bond lengths of Al-O and Ni-O were about 1.741 Å (1.700Å) and 2.369Å (2.012Å), respectively, which means that the Al atom is easier to be oxidized than the Ni atom. It is revealed that the Al atom oxidized selectively and the chemical bond formed between the O ion and the nearest Al ions during the initial oxidation stage.

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.

Pages:

1455-1460

Citation:

J. M. Hu et al., "First-Principles Study on Initial Oxidation of NiAl(110)", Materials Science Forum, Vols. 546-549, pp. 1455-1460, 2007

Online since:

May 2007

Export:

Price:

$38.00

[1] S. C. Lui, J. W. Davenport, E. W. Plummer, D. M. Zehner and G. W. Fernando: Phys. Rev. B. Vol. 42 (1990), p.1582.

[2] M. Wuttig, W. Hoffmann, E. Preuss, R. Franchy, H. Ibach, Y. Chen, M.L. Xu and S. Y. Tong: Phys. Rev. B. Vol. 42 (1990), p.5443.

DOI: https://doi.org/10.1103/physrevb.42.5443

[3] A. T. Hanbicki, H. L. Davis, A. P. Baddorf, D. B. Poker, and E.W. Plummer: Surf. Sci. Vol. 365 (1996), p. L639.

[4] S. M. Yalisove and W. R. Graham: Surf. Sci. Vol. 183 (1987), p.556.

[5] H. L. Davis and J. R. Noonan: J. Vacuum Sci. Technol. Vol. A 3 (1985), p.1507.

[6] H. L. Davis and J. R. Noonan: Phys. Rev. Lett. Vol. 54 (1985), p.566.

[7] R. Franchy: Surf. Sci. Rep. Vol. 38 (2000), p.195.

[8] A. Stierle, F. Renner, R. Streitel and H. Dosch: Phys. Rev. Lett. Vol. 64 (2001), p.165413.

[9] A. Stierle, F. Renner, R. Streitel, H. Dosch, W. Drube and B. C. Cowie: Science Vol. 303 (2004), p.5664.

[10] G. Kresse, M. Schmid, E. Napetschnig, M. Shishkin, l. Kohler and P. V arga: Science Vol. 308 (2005), p.1440.

[11] A. Y. Lozovoi, A. Alavi, and M. W. Finnis: Phys. Rev. Lett. Vol. 85 (2000), p.610.

[12] M. W. Finnis, A. Y. Lozovoi and A. Alavi: Annu. Rev. Mater. Res. Vol. 35 (2005), p.167.

[13] A. Y. Lozovoi, A. Alavi and M. W. Finnis: Comput. Phys. Commun. Vol. 137 (2001), p.174.

[14] M.C. Payne, M. P. Teter, D. C. Allen, T. A. Araias and J. D. Joannopolous: Rev. Mod. Phys. Vol. 64 (1992), p.1045.

[15] J. W. Otto, J. K. Vassiliou and G. Frommeyer: J. Mater. Res. Vol. 12 (1997), p.3106.

[16] J. R. Noonan and H. L. Davis: Science Vol. 234 (1986), p.310.

[17] R. Stumpf and P. J. Feibelman: Phys. Rev. B. Vol. 51 (1995), p.13748.

[18] M. H. Kang and E. J. Mele: Phys. Rev. B. Vol. 36 (1987), p.7371.

[19] J. I. Lee, C. L. Fu and A. J. Freeman: Phys. Rev. B. Vol. 36 (1987), p.9318.

[20] M. Konopka and I. Stich: Phys. Rev. B. Vol. 65 (2002), p.125418.

[21] S. Liu and J. A. Leiro: J. Electron Spectrosc. Relat. Phenom. Vol. 94 (1998), p.39.

[22] A. Kiejna and B. I. Lundqvist: Phys. Rev. B. Vol. 63 (2001), p.085405.

Fetching data from Crossref.
This may take some time to load.