A First Principle Study of the Effect of Nb on the Oxidation Behavior of NiTi Alloy


Article Preview

A first principle study was performed to discuss the high temperature oxidation mechanism of NiTi alloys with the special emphasis on the effect of Nb on the oxidation behavior. The calculation results suggest that the Nb atom prefers the Ti site in Ni(Ti,Nb). The addition of Nb will not only reduces the electron density of Ti-d and Ni-d states near the Fermi energy level but the their electron contributions to the p-orbital of Ti. In addition, the Nb atom increases the formation energy of the Ti defect, which will decrease the diffusion of Ti atoms. All these Nb-induced effects account for the improvement of high temperature oxidation resistance, which agrees well with the experimental results.



Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.




H. L. Wu et al., "A First Principle Study of the Effect of Nb on the Oxidation Behavior of NiTi Alloy", Materials Science Forum, Vols. 546-549, pp. 1471-1476, 2007

Online since:

May 2007




[1] P.G. Lindquist, C.M. Wayman, in: T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman (Eds. ), Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, London(1990), 58.

[2] D.E. Hodgson, M.H. Wu, R.J. Biermann, Shape memory alloys, Metals Handbook, ASM, 10th edn., 2 (1991)897.

[3] R.S. Ruta, A.S. Gadiyar, K. Madangopal, S. Baneriee, Corrosion Vol. 28 (1993), p.217.

[4] B. Thierry, M. Tabrizian, C. Trepanier, O. Savadogo, L.H. Yahia, J. Biomed. Mater. Res. Vol. 51 (2000), p.685.

[5] D.J. Wever, A.G. Veldhuizen, J. de Vries, H.J. Busscher, D.R.A. Uges, J.R. van Horn, Biomaterials Vol. 19 (1998), p.761.

DOI: 10.1016/s0142-9612(97)00210-x

[6] J. Van Humbeeck, Trans. ASME Vol. 121 (1999), p.98. P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6, 231, 666. (2001).

[7] Y. Li, H.B. Xu, X. Q. Zhao, S.K. Gong, S.S. Li. Patent. No 200510053909. 4. (in Chinese).

[8] H.B. Xu, L.J. Meng, Y. Li, X. Q. Zhao, S.K. Gong. Patent. No 200510053911. 1. (in Chinese).

[9] X. Q. Zhao, H.B. Xu, Y. Li, S.K. Gong, Meng, Y. Li. Patent. No 200510053910. 7. (in Chinese).

[10] C.M. Chan, S. Trigwell, T. Duering. Surf. Interf. Anal. Vol. 15 (1990), p.349.

[11] C.H. Xu, X.Q. Ma, S.Q. Shi, C.H. Woo. Materials Science and Engineering A Vol. 371 (2004), p.45.

[12] C.L. Chu, S.K. Wu, Y.C. Yen. Materials Science and Engineering A Vol. 216 (1996), p.193.

[13] G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, J.V. Humbeeck. Biomaterials Vol. 23 (2002), p.4863.

[14] Fu CR, Zou J. Acta Mater Vol. 44(1996), p.1471.

[15] Anderson IM. Acta Mater Vol. 45(1997), p.3897.

[16] C. T Liu, C. L Fu, L. M Pike. Mater. Res. Soc. Symp. Proc. N1. 2(2001), p.646.

[17] O. Y Kontsevoi, Y. N Gornostyrev, A. J Freeman. Mater. Res. Soc. Symp. Proc. N6. 3(2001), p.646.

[18] G. Bozzolo, R. D Noebe, J.E. Garces. Scripta Mater Vol. 42(2000), p.403.

[19] G. Bozzolo, R.D. Noebe, J. Ferrante, A. Garg. Materials Science and Engineering A Vol. 239-240 (1997), p.769.

[20] Y. Song, R. Yang, D. Li, Z.Q. Hub, Z.X. Guo. Intermetallics Vol. 8 (2000), P. 563.

[21] C.S. Moura, A.T. Motta, N.Q. Lam, L. Amaral. Nuclear Instrument and Methods in Physics Research B Vol. 180(2001), p.257.

[22] J. R. Alvarez, P. Rez. Acta mater. Vol. 49 (2001), p.795.

[23] Y. Song, Z.X. Guo, R. Yang. Journal of Light Metals Vol. 2 (2002), p.115.

[24] G. Bozzolo, R. D. Noebe, H.O. Mosca. Journal of Alloys and Compounds Vol. 386 (2005) , p.125.

[25] Y.Z. Yang, X.Q. Zhao, L.J. Meng. Acta Metallurgica Sinica, Vol. 6 (2005), p.627. (in Chinese).

[26] J. Xu, X.Q. Zhao, S.K. Gong, H.B. Xu. Acta Metallurgica Sinica, 2006. (In press).

[27] G. Bozzolo, R. D. Noebe, H.O. Mosca. Journal of Alloys and Compounds Vol. 389 (2005), p.80.

[28] V. Maurice, G. Despert, S. Zanna, M.P. Bacos, P. Marcus. Nature materials, Vol. 3 (2004), p.687.

Fetching data from Crossref.
This may take some time to load.