Effect of Silica on the Electrical Properties of Epoxy of Phenolic Resin/Carbon Black/Silica Composite Coating


Article Preview

Nanocomposites were prepared by embedding carbon black and silica into phenolic resin matrix, which was supported by SEM and particle size analyses. After milling stage, the obtained hybrids were applied to transparency film using K control coater. By the crosslinking procedure, homogenous surface coatings can be achievable. The electrical properties of surface coating can be tailored by variation of silica content with the amount of carbon black fixed. The conductivity of the surface coating increases steeply and then reaches a plateau with the increase of silica. When the weight ratio of silica to carbon black is around 1:2, relatively high conductivity can be desirable. Further increase in silica results in the decrease in conductivity. This can be interpreted in terms of aided or blocked dispersion effects on carbon black imposed by silica. Also, the uniformity of the film is verified by Si-mapping analysis.



Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.




W. Zhang et al., "Effect of Silica on the Electrical Properties of Epoxy of Phenolic Resin/Carbon Black/Silica Composite Coating", Materials Science Forum, Vols. 546-549, pp. 1525-1530, 2007

Online since:

May 2007




[1] Bruce M. Novak: Advanced Materials, Vol. 5 (1993), p.422.

[2] Yoshiki Chujo, Takeo Saegusa,: Advances in Polymer Science, Vol. 100 (1992), p.11.

[3] Masami Kawaguchi, Atsushi Mizutani, Yushu Matsushita, Tadaya Kato: Langmuir, Vol. 12 (1996), p.6179.

DOI: https://doi.org/10.1021/la9508396

[4] Sung-Seen Choi , Changwoon Nah , Seung Goo Lee , Chang Whan J: Polymer Internatinal, Vol. 52 (2003), p.23.

[5] Srinivasa R. Raghavan, H. J. Walls and Saad A. Khan: Langmuir Vol. 16 (2000), p.7920.

[6] M. Ettlinger, T. Ladwig and A. Weise: Progress in Organic Coatings, Vol. 40 (2000), p.31.

[7] S. M. Olhero and J. M. F. Ferreira: Powder Technology, Vol. 139 (2004), p.69.

[8] Sungtack Kang, Sung Il Hong, Chul Rim Choe, Min Park, Soonho Rim, Junkyung Kim: Polymer, Vol. 42 (2001), p.879.

DOI: https://doi.org/10.1016/s0032-3861(00)00392-x

[9] Gabriele Leder, Thorsten Ladwig, Vlasta Valter, Stephanie Frahn, Jürgen Meyer: Progress in Organic Coatings, Vol. 45 (2002), p.139.

DOI: https://doi.org/10.1016/s0300-9440(02)00049-8

[10] Jean-Philippe Boisvert, Aurelien Guyard: Journal of Imagine Science and Technology, Vol. 47(2003), p.256.

[11] Qinguo Fan, Yong K. Kim, melynda K., Armand F. Lewis: Journal of Imagine Science and Technology, Vol. 47 (2003), p.400.

[12] Rich Y. Ryu, Richard D. Gibert, Saad A. Khan: Tappi Journal, Nov. (1999), p.128.

[13] Ales Hladnik, Tadeja Muck: Dyes and pigments, Vol. 54 (2002), p.253.

[14] Katri Vikman: Journal of Imagine Science and Technology, Vol. 47 (2003), p.30.

[15] L. Rejon, A. Rosas-Zavala, J. Porcayo-Calderon, V.M. Castano: Polymer Engineering and Science, Vol. 40 (2000), p.2101.

DOI: https://doi.org/10.1002/pen.11342

[16] Tsutomu Ueda, Toshikazu Ooue, Nara, US 6, 555, 024 (2003).

[17] Allison Y. Xiao, Quinn K. Tong, Ann C. Savoca, Hans Van Oosten: IEEE Transactions on Components and Pachaging Technologies, Vol. 24 (2001), p.445.

[18] Takeo Fujitani, Osaka, Kajio Matsuoka, Tondabayashi, US 4, 258, 100. (1981).

[19] S K D E, J R White: Short Fibre-Polymer Composites (Woodhead Publishing Limited, England 1996).

[20] R. H. Norman: Conductive Rubbers and Plastics (Elsevier publishing company limited, Amsterdam-London-New York 1970).

[21] L. Flandin, Y. Brechet, J. Y. Cavaille: Composites Science and Technology, Vol. 61 (2001), p.895.

[22] Xiaojun Wang, D. D. L. Chung: Sensors and Actuators A, Vol. 71 (1998), p.208.

[23] Information on http: /www. regentsprep. org/Regents/physics/phys03/bresist/default. htm.

[24] Zand R Z, Langroudi A E, Rahimi A: Iranian Polymer Journal, Vol. 14 (2005), p.371.

Fetching data from Crossref.
This may take some time to load.