Effects of EB-PVD Process TGO Formation and Growth within Thermal Barrier Coatings


Article Preview

It has been found that under oxygen partial pressure of ~2×10-6 kPa, the high-temperature oxidation of thermal barrier coatings (TBCs) occurred during an electron beam physical vapor deposition (EB-PVD) process for producing the TBCs top ceramic coating. In the present investigation, two modified bond coats (BCs) of NiCrAlY with Si addition, and NiCrAlY with Co and Hf additions, were developed by Arc Ion-plating technique to study the effects of the EB-PVD process on thermally grown oxide (TGO) formation and growth. The isothermal and cyclic oxidation tests were conducted and the cross-sectional morphologies of the specimens were examined to compare the high-temperature oxidation behaviors of the two TBCs. It was found that a mixed oxide layer have been developed in the as-deposited TBCs with a NiCrAlYSi BC. The mixed oxide layer mainly included Cr2O3, NiO, Al2O3 and their spinel. With the mixed oxide layer, TBCs with the NiCrAlYSi BC showed a superior high-temperature resistance on later high-temperature exposure to TBCs with NiCoCrAlYHf BC, where no mixed oxide layer was observed. The pre-formed mixed oxide layer apparently shortened the time to fully develop a protective α-Al2O3 layer and therefore restrained the TGO growth in TBCs.



Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.




L. M. He "Effects of EB-PVD Process TGO Formation and Growth within Thermal Barrier Coatings", Materials Science Forum, Vols. 546-549, pp. 1781-1788, 2007

Online since:

May 2007





[1] J.T. DeMasi-Marcin and D.K. Gupta: Surf. Coating Technol., Vol. 68/69, (1994), pp.1-9.

[2] R.V. Hillery et al: National Materials Advisory Board Report, National Academy Press. Washington, DC, (1996).

[3] W.Y. Lee, D.P. Stinton, C.C. Berndt, F. Erdogan, Y.D. Lee, and Z. Mutasim: J. Am. Ceram. Soc., Vol. 79, (1996), pp.3003-12.

[4] S.M. Meier, D.M. Nissley, K.D. Sheffler, and T.A. Cruse: Trans, ASME, Vol. 114, (1992), pp.258-63.

[5] A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier and F. S. Pittit: Prog. in Mater. Sci., Vol. 46, (2001), pp.505-553.

[6] K.S. Murphy, K.L. More, and M.J. Lance: Surface and Coatings Technology, Vol. 146-147, (2001), pp.152-161.

[7] M.J. Stiger, N.M. Yanar, F.S. Petti, G.H. Meier: Elevated Temperature Coatings: Science and Technology III, edited by J.M. Hampikian, N.B. Dahotre, The Minerals, Metals & Materials Society, San Diego, CA, (1999), p.15.

[8] U. Bardi, A. Atrei, and G. Rovida: Surface Science, Vol. 268, (1992), pp.87-97.

[9] N. Birks, G.H. Meier, and F.S. Pettit: J. of Metals, Vol. 46 (12), (1994), pp.42-46.

[10] M. Haerig and S. Hofmann: Appl. Surf. Sci., Vol. 25 (1), 1998, pp.99-114.

[11] L.M. He, Y. -F. Su, L.F. Allard, M. Lance, and W.Y. Lee: Metall. Mater. Trans. A, Vol. 35A, pp.1113-1124, (2004).

[12] M. J. Stiger, N. M. Yanar, M. G. Topping, F. S. Pettit and G. H. Meier: [J]. Z. Metallkd., Vol. 90 (12), (1999), pp.1069-1078.

[13] D. Clemens, F. Tietz, R. Munoz-Arroyo, R. Anton, L. Singheiser, J. Quadakkers: Mat. Sci. Forum Vol. 369-372, (2001), p.165.

DOI: 10.4028/www.scientific.net/msf.369-372.165

[14] V.K. Tolpygo, D.R. Clarke, K.S. Murphy: Surf. Coat. Technol., Vol. 146-147, (2001), pp.124-131.

[15] F.A. Golightly, G.C. Wood, and F.H. Stoott: Oxid. Met., Vol. 14 (3), (1980), pp.217-234.

[16] H.M. Tawancy: J. of Mater. Sci., Vol. 28, (1993), pp.561-568.

[17] G.C. Wood: Oxidation of Metal, Vol. 2, (1970), pp.11-57.

[18] A.W. Funkenbusch, J. G. Smeggil, and N. S. Bornstein: Metall. Trans. A. Vol. 16, (1985), pp.1164-1166.

[19] B.A. Pint, I. G. Wright, W.Y. Lee, Y. Zhang, K. Prüβner, and K.B. Alexander: Mater. Sci. Eng., Vol. A245, (1998), pp.201-211.

[20] M. Tanno, K. Ogawa, and T. Shoji: Key Engineering Materials, Vol. 261/263, (2004), pp.1061-1066.

Fetching data from Crossref.
This may take some time to load.