High-Strength Nb3Sn Wire Development for Compact Superconducting Magnets

Abstract:

Article Preview

A superconducting magnet with a magnetic energy of E = B2/2μo [J/m3] has to overcome a magnetic force of P = B2/2μo [Pa] in the same expression. This means that a high-field 20 T superconducting magnet produces an electromagnetic force of 160 MPa. In order to stand such a large force, Nb3Sn superconducting wires are usually reinforced by the hard-copper housing as an external reinforcement method or the stainless steel winding as a mechanical backup of an outermost Nb3Sn coil. If we focus on a compact superconducting magnet like a cryocooled superconducting magnet, a high-strength superconducting wire with a small diameter size of 1- 2 mm is required. The High-Field Laboratory for Superconducting Materials, IMR, Tohoku University has developed Nb3Sn wires internally reinforced with CuNb or CuNbTi composite. These high-strength Nb3Sn wires were successfully employed to construct the unique compact cryocooled 28 T hybrid magnet and the cryocooled 18 T high-temperature superconducting magnet. In addition, we found that the prebending effect for high-strength Nb3Sn wires outstandingly improves the Tc, Bc2 and Ic properties. As a next step, we intend to develop new Nb3Sn strand cables with the strong mechanical property of 500 MPa, applying the prebending effect for a future 22 T-φ400 mm room temperature bore superconducting magnet of a 50 T-class hybrid magnet.

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.

Pages:

1841-1848

Citation:

K. Watanabe et al., "High-Strength Nb3Sn Wire Development for Compact Superconducting Magnets", Materials Science Forum, Vols. 546-549, pp. 1841-1848, 2007

Online since:

May 2007

Export:

Price:

$38.00

[1] K. Noto, K. Watanabe, A. Hoshi, Y. Muto, J. Nagamura, O. Osaki, Y. Sumiyoshi, T. Hamajima, T. Sato and T. Murai: Sci. Rep. RITU Vol. A33 (1986), p.238.

[2] K. Watanabe, Y. Yamada, J. Sakuraba, F. Hata, C. K. Chong, T. Hasebe and M. Ishihara: Jpn. J. Appl. Phys. Vol. 32 (1993), p. L488.

[3] M. Matsukawa, K. Noto, C. Takahashi, Y. Saito, T. Matsuura, K. Katagiri, M. Ikebe, T. Fukutsuka and K. Watanabe: IEEE Trans. Magn. Vol. 28 (1992).

[4] K. Noto, N. Konishi, A. Hoshi, K. Watanabe, M. Noguchi and T. Fukutsuka: Proc. MT-9, Zürich (1985), p.700, and S. Murase, S. Nakayama, K. Shimamura, M. Tezuka, N. Shiga, K. Watanabe and N. Kobayashi: IEEE Trans. Magn. Vol. 32 (1996), p.2937.

[5] K. Watanabe, A. Hoshi, S. Awaji, K. Katagiri, K. Noto, K. Goto, T. Saito and O. Kohno: IEEE Trans. Appl. Supercond. Vol. 3 (1993).

[6] K. Miyoshi, S. Endoh, S. Meguro, G. Nishijima, S. Awaji and K. Watanabe: IEEE Trans. Appl. Supercond. Vol. 14 (2004), p.1004.

[7] K. Watanabe, G. Nishijima, S. Awaji, K. Miyoshi, A. Kimura, M. Ishizuka and T. Hasebe: Proc. 6th European Conf. Appl. Supercond. (EUCAS), edited by A. Andreone, G.P. Pepe, R. Cristiano and G. Masullo (2004), p.494.

[8] K. Watanabe, G. Nishijima, S. Awaji, K. Takahashi, K. Koyama, N. Kobayashi, M. Ishizuka, T. Itou, T. Tsurudome and J. Sakuraba: IEEE Trans. Appl. Supercond. (2006), in press.

DOI: https://doi.org/10.1109/tasc.2006.870787

[9] K. Takahashi, S. Awaji, Y. Sasaki, K. Koyama and K. Watanabe: IEEE Trans. Appl. Supercond. (2006), in press.

[10] G. Nishijima, S. Awaji, S. Hanai and K. Watanabe: Fusion Eng. Des. (2006), in press.

[11] K. Watanabe, S. Awaji, H. Oguro, G. Nishijima, K. Miyoshi and S. Meguro: IEEE Trans. Appl. Supercond. Vol. 15 (2005), p.3564.

[12] S. Awaji, H. Oguro, G. Nishijima, K. Watanabe, S. Harjo, T. Kamiyama and K. Katagiri: Supercond. Sci. Techn. Vol. 18 (2005), p. S313.

[13] S. Awaji, K. Watanabe, H. Oguro, G. Nishijima, H. Tsubouchi, K. Miyoshi and S. Meguro, Fusion Eng. Des. (2006), in press.

[14] to be submitted in the Int. Conf. on Magnet Technology in (2007).

Fetching data from Crossref.
This may take some time to load.