Artificial Nano-Scale Precipitates for Flux Pinning in YBa2Cu3O7-δ Thin Films and Coated Conductors


Article Preview

By controlling pulse number of laser ablation, we prepared a series of quasi-multilayers of YBa2Cu3O7-δ/M (M=incomplete oxide layer) namely 70×(40/n) (n = 2, 5, 10 and 20, pulse number of M) which were characterised with nano-scale precipitates. While the texture properties of Y123 inside qusi-multilayer hardly change, its Tc appeared much different depending on the doping level of M. X-ray θ-2θ scanning and pole figures indicated that the different growth-controlled precipitates occured inside Y123 films. In the case of M=YSZ (Yttria Stabilized Zirconia), nanosized perovskite precipitates of BaZrO3 formed as a result of solid state reaction of YSZ with Y123, leading to Tc obviously decreasing with increasing of n. In the case of M=Y2O3, however, Tc did not decrease so much at the studied range of n due to no solid state reaction mentioned above. Magneto-transport and field angular dependence showed that the critical current density in films with lower doping content (such as n = 2) was improved in large ranges of field and temperature, suggesting tailorable enhancement and anisotropy of flux pinning force.



Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.




C. Cai et al., "Artificial Nano-Scale Precipitates for Flux Pinning in YBa2Cu3O7-δ Thin Films and Coated Conductors", Materials Science Forum, Vols. 546-549, pp. 1865-1870, 2007

Online since:

May 2007




[1] L. Fernández, B. Holzapfel, F. Schindler, B. de Boer, A. Attenberger, J. Hänisch, and L. Schultz, Phys. Rev. B 67, 052503 (2003).

[2] J. L. MacManus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, B. Maiorov, L. Civale, Y. Lin, M. E. Hawley, M. P. Maley, and D. E. Peterson, Appl. Phys. Lett. 84, 5329 (2004).

DOI: 10.1063/1.1851006

[3] C. Cai, B. Holzapfel, J. Hänisch, L. Fernandez, and L. Schultz, Applied Physics Letters 84(3), 377 (2004): Phys. Rev. B 69, 104531 (2004).

[4] J. L. MacManus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. P. Maley and D. E. Peterson, Nature Materials 3, 439 (2004).

DOI: 10.1038/nmat1156

[5] C. Cai, B. Holzapfel, J. Hänisch, and L. Schultz, Phys. Rev. B 70, 212501 (2004).

[6] T. Haugan, P. N. Barnes, R. Wheeler, F. Meisenkothen, and M. Sumption, Nature 430, 867 (2004).

[7] P. N. Barnes, T. J. Haugan, C. V. Varanasi, and T. A. Campbell, Appl. Phys. Lett. 85, 4088 (2004).

[8] L. Krusin-Elbaum, L. Civale, J. R. Thompson, and C. Feild, Phys. Rev. B 53, 11744 (1996).

[9] D. H. Lowndes, D. K. Christen, C. E. Klabunde, Z. L. Wang, D. M. Kroeger, J. D. Budai, Shen Zhu, and D. P. Norton, Phys. Rev. Lett. 74, 2355 (1995).

[10] K. Matsumoto, T. Horide, K. Osamura, M. Mukaida, Y. Yoshida, A. Ichinose and S. Horii, Physica C 412-414, 1267(2004).

[11] K. Matsumoto, T. Horide, A. Ichinose, S. Horii, Y. Yoshida and M. Mukaida, Japn. J. Appl. Phys. 44, L246(2005).

DOI: 10.1143/jjap.44.l246

[12] A. Crisan, S. Fujiwara, J. C. Nie, A. Sundaresan, and H. Ihara, Appl. Phys. Lett. 79, 4547 (2001).

[13] C. Cai, J. Hänisch, R. Hühne, V. Stehr, C. Mickel, T. Gemming, and B. Holzapfel, J. Appl. Phys. 86, 122508 (2005).

[14] J. Hänisch, C. Cai, R. Hühne, L. Schultz, and B. Holzapfel, Appl. Phys. Lett. 86, 122508 (2005).

[15] Z. Han, T. I. Selinder, U. Helmersson, J. Appl. Phys. 75, 2020 (1994).

[16] A. Catana, R. F. Broom, J. G. Bednorz, J. Mannhart, D. G. Schlom, Appl., Phys. Lett. 60, 1016 (1992).

[17] M. Tachiki and S. Takahashi, Solid State Commun. 72, 1083(1989).

Fetching data from Crossref.
This may take some time to load.