Continuous Deposition of Buffer Layers for YBCO Coated Conductor Using Reactive Magnetron Sputtering


Article Preview

A reel-to-reel deposition system was set up for studying YBCO coated conductor. Continuous deposition of multi-layer CeO2/YSZ/Y2O3 buffer layers was carried out on 10mm-width biaxially textured tape of NiW using the reactive dc magnetron sputtering technique. A continuous and uniform buffer layer with good texture was presented over length. For 10–meter-long tapes, the φ-scan FWHM values of Y2O3 (222), YSZ (111), and CeO2 (111) were 7.77°, 7.68° and 7.93°, respectively. The rocking curves showed that the average FWHM values of Y2O3 (004), YSZ (002), and CeO2 (002) were 5.02°, 4.67° and 4.44°, respectively. The microstructure and interfaces of buffer layers were observed by scanning electron microscopy (SEM) and Auger electron spectrum (AES). YBCO layer was prepared by magnetron sputtering technique as well on the short samples.



Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.




J. Yang et al., "Continuous Deposition of Buffer Layers for YBCO Coated Conductor Using Reactive Magnetron Sputtering", Materials Science Forum, Vols. 546-549, pp. 1871-1876, 2007

Online since:

May 2007




[1] D.P. Norton, A. Goyal, J.D. Budai, D.K. Christen, D.M. Kroeger, E.D. Specht, Q. He, B. Saffian, M. Paranthaman, C.E. Klabunde, D.F. Lee, B.C. Sales, F.A. List�Science Vol. 274 (1996), p.755.

DOI: 10.1126/science.274.5288.755

[2] A. Goyal, D.P. Norton, J.D. Budai, M. Paranthaman, E.D. Specht, D.M. Kroeger, D.K. Christen, Q. He, B. Saffian, F.A. List, D.F. Lee, P.M. Martin, C.E. Klabunde, E. Hartfield, V.K. Sikka: Appl. Phys. Lett. Vol. 69 (1996), p.1795.

DOI: 10.1063/1.117489

[3] E.D. Specht , F.A. List, D.F. Lee, K.L. More, A. Goyal, W.B. Robbins, D. O'Neill: Physica C Vol. 382 (2002), pp.342-348 Fig. 9. AFM image showing the surface roughness of a typical CeO2/YSZ/Y2O3/NiW sample.

[4] U. Schoop, M. W. Rupich, C. Thieme, D. T. Verebelyi, W. Zhang, X. Li, T. Kodenkandath, N. Nguyen, E. Siegal, L. Civale, T. Holesinger, B. Maiorov, A. Goyal, and M. Paranthaman: IEEE Trans. Appl. Supercond. VOL. 15 ( 2005), p.2611.

DOI: 10.1109/tasc.2005.847681

[5] X. Cui, F.A. List, D.M. Kroeger, A. Goyal, D.F. Lee, J.E. Mathis, E.D. Specht, P.M. Martin, R. Feenstra, D.T. Verebelyi, D.K. Christen, M. Paranthaman: Physica C Vol. 316. (1999), p.27.

DOI: 10.1016/s0921-4534(99)00248-8

[6] A. Gauzzi, M. Bindi, L. Gianni, S. Ginocchio, S. Zannella, A. Baldini, B. Holzapfel, and F. Bolzoni: IEEE Trans. Appl. Supercond. VOL. 15 ( 2005), p.2628.

DOI: 10.1109/tasc.2005.847685

[7] D.Q. Shi, S.X. Dou, R.K. Ko, J.K. Chung, H.S. Kim, H.S. Ha, K.J. Song and C. Park: Supercond. Sci. Technol. Vol. 18 (2005), pp.1405-1409.

[8] Y. X. Zhou, S. Bhuiyan, S. Scruggs, H. Fang, M. Mironova, and K. Salama, Supercond. Sci. Technol., vol. 16 (2003), p.901.

[9] Y. X. Zhou, X. Zhang, H. Fang, P. T. Putman, and K. Salama: IEEE Trans. Appl. Supercond. VOL. 15 ( 2005), p.2711.

[10] Rock-Kil Ko, Chan Park, Ho-Sup Kim, Jun-Ki Chung, Hong-Soo Ha, Dongqi Shi, Kyu-Jeong Song, Sang-Im Yoo, Seung-Hyun Moon, and Young-Cheol Kim: IEEE Trans. Appl. Supercond. VOL. 15 ( 2005), p.2707.

DOI: 10.1109/tasc.2009.2039205

[11] M.S. Bhuiyan, M. Paranthaman, S. Kang, D.F. Lee, K. Salama: Physica C, Vol. 422 (2005) pp.95-101.

Fetching data from Crossref.
This may take some time to load.