Effect of Temperature on La1.85Sr0.15CuO4 Single Crystal Growth by Floating Zone Method

Abstract:

Article Preview

Superconducting single crystals of La1.85Sr0.15CuO4 have been grown at various temperatures without single crystal seeds by the traveling-solvent floating-zone method. In order to avoid the formation of bubbles during the crystal growth process, a flowing atmosphere of 2 atm oxygen or 1 atm air was applied in different temperature range. It was found that the crystal quality could be improved by raising the growth temperature in a certain range, and the orientation changed from (110) to (100) at higher temperature. X-ray diffraction results showed that the full-width at half-maximum of the best as-prepared crystal was 0.086°. The crystals grown in 2 atm oxygen showed a superconducting transition temperature (Tc) of 37.3 K, while the crystals grown in floating air showed a Tc of about 35 K and it could be improved to 36.5 K by annealing in flowing oxygen.

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.

Pages:

1897-1900

Citation:

X.Q. Xiang et al., "Effect of Temperature on La1.85Sr0.15CuO4 Single Crystal Growth by Floating Zone Method", Materials Science Forum, Vols. 546-549, pp. 1897-1900, 2007

Online since:

May 2007

Export:

Price:

$38.00

[1] C. K Chen, B.E. Watts, B.M. Wanklyn, et al., J. Cryst. Growth Vol. 91 (1988), p.659.

[2] A.N. Maljuk, A.A. Zhokhov, G.A. Emel'chenko, I.I. Zver'kova, A.N. Turanov and V. Sh. Shekhatman: Physica C Vol. 214 (1993), p.93.

[3] V.G. Veselago, K.V. Gamajunov, V.I. Zorya, A.L. Ivanov, V.V. Osiko, V.M. Tatarintsev, V.A. Fradkov, M.A. Chernikov and A.I. Chernov : Supercond. Sci. Technol Vol. 3 (1990), p.121.

DOI: https://doi.org/10.1088/0953-2048/3/3/003

[4] F. Zhou, W.X. Ti, J.W. Xiong, Z.X. Zhao, X.L. Dong, P.H. Hor, Z.H. Zhang and W.K. Chu: Supercond. Sci. Technol. Vol. 16 (2003), p. L7.

[5] H. Kojima, J. Yamamoto, Y. Mori, M. K.R. Khan, et al., Physica C Vol. 293 (1997), p.14.

[6] S. Komiya, Y. Ando, X.F. Sun, A.N. Lavrov: Phys. Rev. B Vol. 65 (2002), p.214535.

[7] A.N. Maljuk, G.A. Emel'chenko, et al., Supercond. Sci. Technol Vol. 7 (1994), p.596.

[8] C. K. Chen: Prog Cryst Growth CH Vol. 36 (1998), p.1.

[9] G. Behr, W. Löser, M. -O. Apostu, et al.: Cryst. Res. Technol Vol. 40 (2005), p.21.

[10] I. Tanaka, M. Yamanaka, J. K. Park, et al. J Ceram Process Res Vol. 6 (2005), p.129.

[11] S. Hosoya, T. Fukuda, T. Kajitani, K. Hiraga, K. Oh-Ishi, Y. Syono, K. Yamada , Y. Endoh, T. Takahashi and H. Katayama-Yoshida: JJAP Series 7 Mechanism of superconductivity (1991), p.81.

[12] K.A. Jackson: J. Cryst. Growth Vol. 264 (2004), p.519.

[13] K.W. Yeh, Y. Huang, J.Y. Gan and Y.S. Chang: J. Cryst. Growth Vol. 268 (2004).

Fetching data from Crossref.
This may take some time to load.