Effect of Thickness on Properties of MgB2 Thin Films


Article Preview

Superconducting MgB2 films have been fabricated on sapphire substrate by the method of hybrid physical-chemical vapor deposition (HPCVD). The film thickness ranges from 75 nm to 3 μm. The investigation on the physical properties, such as the transition temperature, TC, the transition width, T, and the critical current density, JC, has indicated that the optimum film thickness is about 1 μm. At this thickness, Tc(onset) = 40.3 K and 0Tc = 0.15 K. At T = 5 K without external field, JC has been estimated as 5.6×105 A/cm2according to the Bean model. The film quality begins to degrade as the thickness exceeds 1 μm. This work has demonstrated that HPCVD is a simple but effective technique for the application in the production of MgB2 wires.



Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.




C. G. Zhuang et al., "Effect of Thickness on Properties of MgB2 Thin Films", Materials Science Forum, Vols. 546-549, pp. 2047-2050, 2007

Online since:

May 2007




[1] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J Akimitsu, Nature 410 (2001) 63.

DOI: 10.1038/35065039

[2] D. Larbalestier, A. Gurevich, D. Matthew Feldmann, A. Polyanskii, Nature 414 (2001) 368.

[3] X.H. Zeng, A.V. Pogrebnyakov, A. Kotcharov, J.E. Jones, X.X. Xi, E.M. Lysczek, J.M. Redwing, S.Y. Xu, Q. Li, L. Lettieri D.G. Schlom, W. Tian, X.Q. Pan, and Z.K. Liu, Nature Materials 1 (2002)35.

DOI: 10.1038/nmat703

[4] A.V. Pogrebnyakov, J.M. Redwing, J.E. Jones, X.X. Xi, S.Y. Xu, Qi Li, V. Vaithyanathan, D.G. Schlom, Appl. Phys. Lett. 82 (2003) 4319.

DOI: 10.1063/1.1583852

[5] V. Braccini, A. Gurevich, J. E. Giencke, M. C. Jewell, C. B. Eom, D. C. Larbalestier, A. Pogrebnyakov, Y. Cui, T. Liu, Y. F. Hu, J. M. Redwing, Q. Li, X. X. Xi, R. Singh, R. Gandikota, J. Kim, B. Wilkens, N. Newmann, J. Rowell, B. Moeckly, V. Ferrando, C. Tarantini, D. Marr, M. Putti, C. Ferdeghini, R. Vaglio, and E. Haanappel, Phys. Rev. B 71 (2005).

DOI: 10.1103/physrevb.71.012504

[6] A. V. Pogrebnyakov, X. X. Xi, J. M. Redwing,V. Vaithyanathan, D. G. Schlom, A. Soukiassian, S. B. Mi, C. L. Jia, J. Giencke, C. B. Eom, J. Chen, Y. F. Hu, Y. Cui, and Q. Li, Appl. Phys. Lett. 85 (2004) (2017).

DOI: 10.1063/1.1782258

[7] C. P. Chen, X. F. Wang, Y. Lu, Z. Jia, J. P. Guo, X. N. Wang, M. Zhu, X. Y. Xu, J. Xu, Q. R. Feng, Physica C 416 (2004) 90.

[8] C. P. Chen, Q. R. Feng, Z. Z. Gan, G. C. Xiong, J. Xu, Y. F. Liu, L. W. Kong, L. Li, Z. Jia, J. P. Guo, C. G. Zhuang, L. L, Ding, L. P. Chen, F. Li, and K. C. Zhang, Chin. Sci. Bull. 50, 719 (2005).

[9] W.N. Kang et al., Science 292 1521 (2001).

[10] Kaicheng Zhang, Li-li Ding, Cheng-gang Zhuang, Li-ping Chen, Chinping Chen*, and Qing-rong Feng, submit to Phys. Stat. Sol. (a, 203, 2463 (2006).

DOI: 10.1002/pssa.200522262

[11] A.V. Pogrebnyakov, J.M. Redwing, S. Raghavan, V. Vaithyanathan, D.G. Schlom, S.Y. Xu, Qi Li, D.A. Tenne, A. Soukiassian, X.X. Xi, M. D. Johannes, D. Kasinathan, W.E. Pickett, J.S. Wu, J.C.H. Spence, Phys. Rev. Lett. 93 (2004) 147006.

DOI: 10.1103/physrevlett.93.147006

Fetching data from Crossref.
This may take some time to load.