Heusler Type CoNiGa Alloys with High Martensitic Transformation Temperature

Abstract:

Article Preview

A strong need exists to develop new kinds of high-temperature shape-memory alloys. In this study, two series of CoNiGa alloys with different compositions have been studied to investigate their potentials as high-temperature shape-memory alloys, with regard to their microstructure, crystal structure, and martensitic transformation behavior. Optical observations and X-ray diffractions confirmed that single martensite phase was present for low cobalt samples, and dual phases containing martensite and γ phase were present for high cobalt samples. It was also found that CoNiGa alloys in this study exhibit austenitic transformation temperatures higher than 340°C, showing their great potentials for developing as high-temperature shape-memory alloys.

Info:

Periodical:

Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.

Pages:

2241-2244

Citation:

Y. Q. Ma et al., "Heusler Type CoNiGa Alloys with High Martensitic Transformation Temperature", Materials Science Forum, Vols. 546-549, pp. 2241-2244, 2007

Online since:

May 2007

Export:

Price:

$38.00

[1] K. Otsuka and X.B. Ren: Intermetallics Vol. 7 (1999), p.511.

[2] K. Otsuka and C.M. Wayman: Shape memory materials (Cambridge University Press, Cambridge 1998).

[3] H.B. Xu: Mater. Sci. Forum Vol. 394-395 (2002), p.375.

[4] J.H. Yang and C.M. Wayman: Intermetallics Vol. 2 (1994), p.111.

[5] Y.Q. Ma, C.B. Jiang CB, L.F. Deng and H.B. Xu: J. Mater. Sci. Tech. Vol. 19 (2003), p.431.

[6] J.V. Humbeeck: J. Eng. Mater. Tech. Vol. 121 (1999), p.98.

[7] D. Golberg, Y. Xu, Y. Murakami, S. Morito et al.: Scripta Metall. Mater. Vol. 30 (1994), p.1349.

[8] K. Ullakko, J.K. Huang, C. Kantner, et al.: Appl. Phys. Lett. Vol. 69 (1996), p. (1966).

[9] C.B. Jiang, G. Feng and H.B. Xu: Appl. Phys. Lett. Vol. 80 (2002), p.1619.

[10] J. Pons, V.A. Chernenko, R. Santamarta and E. Cesari: Acta Mater. Vol. 48 (2000), p.3027.

[11] V.A. Chernenko, E. Cesari, V.V. Kokorin et al.: Scripta Metall. Mater. Vol. 33 (1995), p.1239.

[12] Y. Li, Y. Xin, C.B. Jiang and H.B. Xu: Scripta Mater. Vol. 51 (2004), p.849.

[13] X. Jin, M. Marioni, D. Bono, S.M. Allen, et al.: J. Appl. Phys. Vol. 91 (2002), p.8222.

[14] H.B. Xu, Y.Q. Ma and C.B. Jiang: Appl. Phys. Lett. Vol. 82 (2003), p.3206.

[15] Y.Q. Ma, C.B. Jiang, G. Feng and H.B. Xu: Scripta Mater. Vol. 48 (2003), p.365.

[16] Y.Q. Ma, L.H. Xu, Y. Li, C.B. Jiang, H.B. Xu and Y.K. Lee: Z. Metallkd. Vol. 96 (2005), p.843.

[17] V.A. Chernenko, J. Pons, E. Cesari and A.E. Perekos: Mater. Sci. Eng. A Vol. 378 (2004), p.357.

[18] M. Sato, T. Okazaki, Y. Furuya and M. Wutting: Mater. Trans. Vol. 44 (2003), p.372.

Fetching data from Crossref.
This may take some time to load.