Removal of Na and Ca from Aluminum Scrap through Filtration


Article Preview

Removal of Na by an “active” AlF3 filter seemed to be so efficient that all the sodium was removed in the present experiments. The removal of Na is considered to be limited by the resistance in the melt boundary layer only. However this is not the case for calcium. For calcium to be transfered into the AlF3, resistance in the filter grains has to be taken into account in addition to the resistance in the melt boundary layer. This was indicated by the total mass transfer coefficient of only 4x10-5 m/s. A kinetic model was derived that can describe the removal of Ca from molten aluminum in an “active” AlF3 filter by deep bed filtration following first order kinetics.



Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.




H. Görner et al., "Removal of Na and Ca from Aluminum Scrap through Filtration", Materials Science Forum, Vols. 546-549, pp. 801-806, 2007

Online since:

May 2007




[1] C. Weaver: Fifth Australasian-Asian Pacific Conference on Aluminum Cast House Technology: Theory & Practice, 1997, Edited by M. Nilmani, P. Whiteley, and J. Grandfield, The Minerals, Metals & Materials Society, 1997, pp.105-109.

[2] D. D. Smith, L. S. Aubrey. ARABAL 99: Ninth International Arab Aluminium Conference and Exhibition, Kuweit, 27. -29. Nov. (1999).

[3] G. Beland, C. Depuis, C. Leroy. Light Metals, 1995, pp.1189-1195.

[4] E.M. Williams. 130 th TMS Annual Meeting, New Orleans, Louisiana, February 2001, pp.1-7.

[5] S.R. Sibley. Proceedings of the International Conference on Molten Aluminium Processing, Vol. 4th, 1995, pp.417-430.

[6] C. E. Eckert, R. E. Miller, D. Apelian, R. Mutharasan, Light Metals, (1984), Ed. J. P. Mcgeer, 1281 - 1304.

[7] S. Ali, D. Apelian, R. Mutharasan. Canadian Metallurgical Quarterly, Vol. 24, No. 4, 1985, pp.311-318.

[8] D. Apelian, Proceedings of the 46th Electric Furnace Conference, Pittsburgh, December (1988).

[9] S.M. Wolf, A.P. Levitt, J. Brown, Chem. Eng. Prog., Vol. 62, No. 3, 1966, pp.74-78.

[10] D. Chatain, L. Coudurier, N. Eustathopoulos, Rev. Phys. Appl. Vol. 23, 1988, pp.1055-1064.

[11] G. Snow. British Patent Number 1, 148, 344.

[12] M. V. Brant, D. C. Bone, E. F. Emley. Journal of Metals, 23, March 1971, pp.48-53.

[13] R. Figueres. International Seminar on Refining and Alloying of Liquid Aluminium and Ferro-Alloys, August 26-28, Trondheim, Norway, 1985, pp.325-332.

[14] K. Oosumi, Y. Nagakura, R. Masuda, Y. Watanabe, T. Ohzono. Recycling of Metals and Engineered Materials, TMS, 2000, pp.951-961.

[15] Z. Ming, L. Ke, S. Bao-de, S. Da, W. Jun:. Trans. Nonferrous Met. Soc. China, Vol. 12 No. 3, June 2002, pp.470-474.

[16] M. Zhou, D. Shu, K. Li, W.Y. Zhang, H.J. Ni, B.D. Sun, J. Wang:. Metallurgical and Materials Transactions A, Volume 34A, May 2003, pp.1183-1191.

[17] Yoshikazu Ohno. Journal of Japan Institute of Light Metals, No. 51, 2001, pp.134-37 off print (Translated from Japanese).

[18] A. Silny, T.A. Utigard, Light Metals 1997, TMS Annual Meeting, Orlando, 1997, pp.871-878.

[19] J. -D. Bornand, K. Buxmann. Light Metals, 1986, pp.1249-1260.

[20] K. R. Butcher, D. D. Smith, L. Aubrey. Selee technical papers, Selee Corporation, 700 Shepherd Street, Hendersonville, NC 28792.

[21] M. Zhou, D. Shu, K. Li, W. Y. Zhang, H. J. Ni, B. D. Sun, J. Wang. Metallurgical and Materials Transactions A, Volume 34A, May 2003, pp.1183-1191.

[22] P. Achim, G. Dubé. Light Metals 1982, 1982, pp.903-918.

[23] Harald Görner, Thorvald Abel Engh, Martin Syvertsen, Light Metals 2006, TMS Annual Meeting, San Antonio, 2006, pp.765-770.

[24] T. Abel Engh. OXFORD UNIVERSITY PRESS, 1992, p.319.