Characterization of Precipitation in Al-Zn-Mg-Cuand Li Containing Al-Zn-Mg-Cu Alloys after Isothermal Aging


Article Preview

The evolution of microstructure, precipitate size, volume fraction and integrated intensity of Al-8.0Zn-2.05Mg-1.76Cu (7055) and 7055-1.0Li alloys during isothermal ageing has been studied by transmission electron microscopy (TEM) and synchrotron-radiation small angle X-ray scattering (SAXS). According to the TEM results, referring to the thermodynamic phase diagram, it was found that the addition of Li changed the types of the precipitates. T1 phase was observed in the 7055-1.0Li alloy besides the GP zones, η' and η with variant orientations with matrix, η1、η2 and η4. The super-lattice spots of L12 (Cu3Au) structure were probably due to the existence of Al3Li (δ') or Al3(Zr,Li). Furthermore, the precipitation sequence has been modified in Li-containing Al-Zn-Mg-Cu alloys. The precipitate volume fraction derived from the integrated intensity for 7055 alloy reached an plateau except ageing at 120°C and the maximum was about 0.052-0.054 in the temperature range 140-160°C.



Materials Science Forum (Volumes 546-549)

Edited by:

Yafang Han et al.




Z. W. Du et al., "Characterization of Precipitation in Al-Zn-Mg-Cuand Li Containing Al-Zn-Mg-Cu Alloys after Isothermal Aging", Materials Science Forum, Vols. 546-549, pp. 977-982, 2007

Online since:

May 2007




[1] A. Deschamps, F. Livet, Y. Bréchet: Acta. Mater. Vol. 47 (1999), p.281.

[2] A. Deschamps, Y. Brechet: Acta. Mater. Vol. 47 (1999), p.293.

[3] P. Guyot, L. Cottignies: Acta. Mater. Vol. 44 (1996), p.4161.

[4] J. C Werenskiold, A. Deschamps: Mater. Sci. Eng. A Vol. 293 (2000), p.267.

[5] J.D. Embury, A. Deschamps: Scripta. Mater. Vol. 49 (2003), p.927.

[6] L.K. Berg, J. GjØnnes: Acta. Mater. Vol. 49 (2001), p.3443.

[7] X.Z. Li, V. Hansen: Acta. Mater. Vol. 47 (1999), p.2651.

[8] A. Deschamps, Y. Bréchet. Scrip. Mater. Vol. 39 (1998), p.1517.

[9] A. Deschamps, Y. Bréchet. Z. Metallkd. Vol. 88 (1997), p.601.

[10] T. Engdahl, V. Hansen: Mater. Sci. Eng. A Vol. 327 (2002), p.59.

[11] K. Stiller, P.J. Warren: Mater. Sci. Eng. A Vol. 270 (1999), p.55.

[12] S.S. Brenner, J. Kowalik, J.H. Ming: Surf. Sci. Vol. 246 (1991), p.210.

[13] C.Q. Chen. In Proceedings of the 6th International Conference on Aluminum Alloys, Toyohashi, Japan, 1998, edited by T. Sato pp.165-172.

[14] D.N. Seidman, E.A. Marquis: Acta. Mater. Vol. 50 (2002), p.4021.

[15] H.J. Kim, M. Niinomi: Mater. Sci. Eng. A Vol. 284 (2000), p.14.

[16] M. Nicolas and A. Deschamps: Acta. Mater. Vol. 51 (2003), p.6077.

[17] C.S. Tsao and T.L. Lin: J. Alloy Compd. Vol. 289 (1999), p.81.

[18] P. Gomiero and F. livet: Acta. Metall. Mater. Vol. 40 (1992), p.847.

[19] Z.W. Du, T.T. Zhou, C.Q. Chen: in Proceedings of the 9th International Conference on Aluminum Alloys, Brisbane, Australia, 2004, 1067-1072.

[20] Z.W. Du. Precipitation and strengthening of 7000 serials and their Li containing aluminium alloys, Ph. D. Thesis, Beihang University, Beijing , China; (2004).

[21] A. Dechamps and A. Bigot: Philos. Mag. A Vol. 81 (2001), p.2391.

[22] A. Guinier: Small-Angle Scattering of X-Rays (John Wiley Publications, New York 1955).

Fetching data from Crossref.
This may take some time to load.