Slip Circle Constructions for Inhomogeneous Rotational Flow

Abstract:

Article Preview

Humphreys’ simple construction to aid understanding of the patterns of rotational plastic flow observed near undeformable particles in a ductile plastically sheared matrix can be generalised to predict flow under hardness indenters in crystalline metals. The consequences for internal stress distributions and polycrystalline plasticity are briefly indicated.

Info:

Periodical:

Edited by:

P. B. Prangnell and P. S. Bate

Pages:

105-117

Citation:

L.M. Brown, "Slip Circle Constructions for Inhomogeneous Rotational Flow", Materials Science Forum, Vol. 550, pp. 105-117, 2007

Online since:

July 2007

Authors:

Export:

Price:

$38.00

[1] A. H. Cottrell: Dislocations and Plastic Flow in Crystals (Oxford University Press, 1953, see p.157) ∆σ = T αµb 2(SS2-SH 2) ep (SS2-SH 2) bd.

[2] A. H. Cottrell: 1964, Mechanical properties of Matter (John Wiley, 1964 see section 9. 4).

[3] M. F. Ashby: Phil. Mag. Vol. 21 (1970) p.399.

[4] K. C. Russell and M. F. Ashby: Acta Met. Vol. 18 (1970) p.891.

[5] N. A. Fleck and J. W. Hutchinson: J. Mech. Phys. Sol. Vol. 41 (1994) p.1825 ; also, Adv. Appl. Mech., Vol. 33 (1996) p.295.

[6] H. Mughrabi: Mat. Sci. & Eng. Vol. A 387-389 (2004) p.209.

[7] John Humphreys and Pete Bate: Scripta Mat. Vol. 48 (2003) p.173.

[8] L. M. Brown: Phil. Trans. Roy. Soc. Lond. Vol. A 355 (1997) p. (1979).

[9] Toshio Mura: Micromechanics of Defects in Solids (Kluwer Academic Publishers, Dordrecht, 1987, Chapter 4).

[10] Doris Kuhlmann-Wilsdorf 2002 The LES Theory of Solid Plasticity (Ch. 59 in Vol. 11 of Dislocations in Solids, F.R.N. Nabarro and M.S. Duesbery, Eds., Elsevier Science B.V., Amsterdam 2002).

DOI: https://doi.org/10.1016/s1572-4859(02)80010-9

[11] Humphreys, F. J. : Perhaps the best overall summary of this work and references to the original papers are to be found in the book by Humphreys, F. J., and Hatherly, M., Recrystallization and related annealing phenomena (Oxford, Pergamon, 1995).

DOI: https://doi.org/10.1016/b978-0-08-041884-1.50009-x

[12] M. M. Chaudhri, Dislocations and Indentation (Chapter 12 in Dislocations in Solids, F.R.N. Nabarro and J.P. Hirth, Eds., Elsevier B.V. 2004).

[13] D. Tabor, The Hardness of Metals, Oxford University Press 1951; also reprinted in Oxford Classic Texts in the Physical Sciences, (2000).

[14] C.C. Chen and A. A. Hendrickson: in The Science of Hardness Testing and its Research Applications, J. H. Westbrook and H. Conrad, Eds., published by American Society for Metals, Metals Park, Ohio, 1973, p.274.

[15] C. R. Calladine: Engineering Plasticity (Pergamon Press, Oxford and New York 1969).

[16] J. G. Swadener, E. P. George, and G. M. Pharr: J. Mech. Phys. Sol. Vol. 50 (2002) p.681.

[17] K. L. Johnson, Contact Mechanics (Cambridge University Press, 1985, Chapter 2).

[18] S. J. Lloyd, A. Castellero, F. Guiliani, Y. Long, K. K. McLaughlin, J. M. Mlina-Aldereguia, N. A. Stelmashenko, L. J. Vandeperre, and W. J. Clegg: Proc. Roy. Soc. Vol. A 461 (2005) p.2521.

[19] E. H. Yoffe: Phil. Mag. A Vol. 46 (1982) p.617.

[20] William D. Nix and Huajian Gao: J. Mech. Phys. Solids Vol. 46 (1998) p.411.

[21] Young Lee Lim and M. Munawar Chaudhri: Phil. Mag. Vol. A 79 (1999) p.2979.

[22] A. A. Elmustafa, A. A. Ananda, and W. M. Elmahboub: J. Eng. Mat. and Tech., Vol. 126 (2004) p.353.