The Application of Multiscale Modelling for the Prediction of Plastic Anisotropy and Deformation Textures

Abstract:

Article Preview

Finite element models for metal forming and models for the prediction of forming limit strains should be as accurate as possible, and hence should take effects due to texture, microstructure and substructure (dislocation patterns) into account. To achieve this, a hierarchical type of modelling is proposed in order to maintain the balance between calculation speed (required for engineering applications) and accuracy. This means that the FE models work with an analytical constitutive model, the parameters of which are identified using results of multilevel models. The analytical constitutive model will be discussed, as well as the identification procedure. The multilevel models usually connect the macro-scale with a meso-scale (grain level) via a homogenisation procedure. They can also be used to make predictions of deformation textures. These will be quantitatively compared with experimentally obtained rolling textures of steel and aluminium alloys. It was found that only models which to some extent take both stress and strain interactions between adjacent grains into account perform well. Finally an example of a three level model, also including the micro-scale (i.e. the dislocation substructure), will be given.

Info:

Periodical:

Edited by:

P. B. Prangnell and P. S. Bate

Pages:

13-22

DOI:

10.4028/www.scientific.net/MSF.550.13

Citation:

P. van Houtte et al., "The Application of Multiscale Modelling for the Prediction of Plastic Anisotropy and Deformation Textures", Materials Science Forum, Vol. 550, pp. 13-22, 2007

Online since:

July 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.