The Application of Multiscale Modelling for the Prediction of Plastic Anisotropy and Deformation Textures


Article Preview

Finite element models for metal forming and models for the prediction of forming limit strains should be as accurate as possible, and hence should take effects due to texture, microstructure and substructure (dislocation patterns) into account. To achieve this, a hierarchical type of modelling is proposed in order to maintain the balance between calculation speed (required for engineering applications) and accuracy. This means that the FE models work with an analytical constitutive model, the parameters of which are identified using results of multilevel models. The analytical constitutive model will be discussed, as well as the identification procedure. The multilevel models usually connect the macro-scale with a meso-scale (grain level) via a homogenisation procedure. They can also be used to make predictions of deformation textures. These will be quantitatively compared with experimentally obtained rolling textures of steel and aluminium alloys. It was found that only models which to some extent take both stress and strain interactions between adjacent grains into account perform well. Finally an example of a three level model, also including the micro-scale (i.e. the dislocation substructure), will be given.



Edited by:

P. B. Prangnell and P. S. Bate




P. van Houtte et al., "The Application of Multiscale Modelling for the Prediction of Plastic Anisotropy and Deformation Textures", Materials Science Forum, Vol. 550, pp. 13-22, 2007

Online since:

July 2007




[1] A.J. Beaudoin, K.K. Mathur, P.R. Dawson and G. Johnson: Int. J. Plasticity Vol. 19 (1993), p.833.

[2] Z. Marciniak and K. Kuczynski: Int. J. Mech. Sci. Vol. 9 (1967), p.609.

[3] P. Van Houtte: Int. J. Plasticity Vol. 10 (1994), p.719.

[4] R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater., Vol. 41 (1993) p.2611.

[5] P. Bate: Philos. T. Roy. Soc. Vol. A 357: 1756 (1999), p.1589.

[6] S.R. Kalidindi, C.A. Bronkhorst, and L. Anand: J. Mech. Phys. Solids Vol. 40 (1992), p.537.

[7] P. Van Houtte and A. Van Bael: Int. J. Plasticty Vol. 20 (2004), p.1505.

[8] P. Van Houtte: Int. J. Plasticty Vol. 17 (2001), p.807.

[9] G.I. Taylor:J. Inst. Metals, Vol. 62 (1938), p.307.

[10] P. Van Houtte, S. Li, M. Seefeldt and L. Delannay: Int. J. Plasticty Vol. 21 (2005) 589.

[11] J.F.W. Bishop and R. Hill: Phil. Mag. Vol. 42 (1951), p.414.

[12] J.F.W. Bishop and R. Hill: Phil. Mag. Vol. 42 (1951), p.1298.

[13] T. Kuwabara, A. Van Bael and E. Iizuka: Acta Materialia Vol. 50 (2002) pp.3717-3729.

[15] P. Van Houtte, L. Delannay and S. R. Kalidindi: International Journal of Plasticity Vol. 18 (2002) p.359.

[16] P. Van Houtte, S. Li, and O. Engler: Aluminium Vol. 80/6 (2004) p.702.

[17] M. Crumbach, G. Pomana, P. Wagner, G. Gottstein: Recrystallisation and Grain Growth, Proc. First Joint Conference, G. Gottstein, and D.A. Molodov (Eds. ), Springer, Berlin (2001), p.1053.

[18] B. Peeters, M. Seefeldt, C. Teodosiu, S.R. Kalidindi, P. Van Houtte, E. Aernoudt: Acta Mater. Vol. 49 (2001), p.1607.

[19] B. Peeters, B. Bacroix, C. Teodosiu, P. Van Houtte, E. Aernoudt: Acta Mater. Vol. 49 (2001), p.1621.


[20] B. Peeters, S.R. Kalidindi, C. Teodosiu, P. Van Houtte, E. Aernoudt: Journal of the Mechanics and Physics of Solids Vol. 50 (2002) p.783.

[21] P. Van Houtte and Bart Peeters:J. Phys. IV France Vol. 105 (2003) p.207.

[22] B. Holmedal, P. Van Houtte, Y. An, K. Pedersen, T. Furu and S. Court: Aluminium Vol. 80/6 (2004) p.702.

[23] E.V. Nesterova, B. Bacroix and C. Teodosiu, 2001: Metallurgical and Materials Transactions A, Vol. 32 (2001) pp.2527-2538.