Deformation Mechanisms in High-Al Bearing High-Mn TWIP Steels in Hot Compression and in Tension at Low Temperatures


Article Preview

The hot deformation behaviour of two high-Mn (23-24 wt-%) TWIP steels containing 6 and 8 wt-% Al with the fully austenitic and duplex microstructures, respectively, has been investigated at temperatures of 900-1100°C. In addition, tensile properties were determined over the temperature range from -80 to 100°C. It was observed that in spite of the lower Al content, the austenitic steel possessed the hot deformation resistance about twice as high as that of the duplex steel. Whereas the flow stress curves of the austenitic steel exhibited work hardening followed by slight softening due to dynamic recrystallisation, the duplex steel showed the absence of work hardening and discontinuous yielding under similar conditions. Tensile tests at low temperatures revealed that the austenitic grade had a lower yield strength than that of the duplex grade, but much better ductility, the elongation increasing with decreasing temperature, contrary to that for the duplex steel. This can be attributed to the intense mechanical twinning in the austenitic steel, while in the duplex steel, twinning occurred in the ferrite only and the austenite showed dislocation glide.



Edited by:

P. B. Prangnell and P. S. Bate




A. S. Hamada et al., "Deformation Mechanisms in High-Al Bearing High-Mn TWIP Steels in Hot Compression and in Tension at Low Temperatures", Materials Science Forum, Vol. 550, pp. 217-222, 2007

Online since:

July 2007




[1] K. Sato, M. Ichinose, Y. Hirotsu and Y. Inoue: ISIJ Int., Vol. 29 (1989), p.868.

[2] L. Krüger, L.W. Meyer, U. Brüt, G. Frommeyer and O. Grässel: J. Phys. IV, Vol. 110 (2003), p.189.

[3] W. Bleck and K. Phiu-on: Mat. Sci. Forum Vol. 500-501 (2005), p.97.

[4] Y. Tomota, M. Strum and J.W. Morris, Jr: Metall. Trans. A, Vol. 17A (1986), p.537.

[5] U. Brüx, G. Frommeyer, O. Grässel, L.W. Meyer and A. Weise: Steel Res. Int., Vol. 73 (2002), p.294.

[6] A.S. Hamada and L.P. Karjalainen: Can. Metall. Quar., Vol. 45 (2006), p.418.

[7] A.S. Hamada, L.P. Karjalainen and M.C. Somani, under submission.

[8] M.K. Akben, T. Chandra, P. Plassiard and J.J. Jonas: Acta Metall., Vol. 32 (1984), p.591.

[9] F.J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena, 1 st ed., (Elsevier Science Ltd., Oxford, UK, 1995).

[10] X.J. Liu, S.M. Hao, L.Y. Xu, Y.F. Guo and H. Chen: Metall. Trans. A, Vol. 27A (1996), p.2429.

[11] M.R. Barnett and J.J. Jonas: ISIJ Int., Vol. 39 (1999), 856.

[12] W.C. Cheng and H.Y. Lin: Mater. Sci. Eng. A, Vol. 323 (2002), p.462.

[13] C.M. Sellars, W.J. Mc G. Tegart: Int. Metall. Rev., Vol. 17 (1972): p.1.

[14] P. Kantanen: Determination of constitutive equations for the modelling of hot rolling of steels, Master's thesis, (University of Oulu, Oulu, Finland, 1996).

[15] L. Li, W. Yang and Z. Sun: Metall. Mater. Trans. A, Vol. 37A (2006), p.60.

[16] M.R. Barnett, G.L. Kelly and P.D. Hodgson: Metall. Mater. Trans. A, Vol. 33A (2002), p.1893.

[17] H. Suzuki in: F. Nabarro, ed.: Dislocations in solids, Vol. 4, (North-Holland Publ., Amsterdam, 1979).

[18] O. Grässel and G. Frommeyer: Mater. Sci. Technol., Vol. 14 (1998), p.1213.

[19] G.B. Olson and M. Cohen, Metall. Trans. A, Vol. 7A (1976), p.1897.

[20] R.E. Reed-Hill, J.P. Hirth and H.C. Rogers: Deformation twinning, (Gordon and Breach, New York, 1964).

Fetching data from Crossref.
This may take some time to load.