Simulation of Rolling and Recrystallization Textures in Aluminium Alloy Sheets


Article Preview

Computer-based alloy and process development requires integration of models for simulating the evolution of microstructure, microchemistry and crystallographic texture into process models of the thermo-mechanical production of Al sheet. The present paper focuses on recent developments in linking softening modules that simulate the progress of recovery and recrystallization with the following texture changes to deformation and microchemistry models. The potential of such coupled simulations is illustrated by way of the thermo-mechanical processing of Al-Mn-Mg AA 3104 can stock. In particular, the impact of inter-stand recrystallization between the tandem hot rolling passes as well as recrystallization during coil cooling (“self-annealing”) on the resulting hot strip and final gauge textures are explored. Finally, the predicted textures are input into a polycrystal-plasticity approach to simulate anisotropic properties (earing behaviour) of the sheets. Thus, it is possible to link the materials properties at final gauge to the decisive steps of deformation and recrystallization along the thermo-mechanical process chain.



Edited by:

P. B. Prangnell and P. S. Bate




O. Engler, "Simulation of Rolling and Recrystallization Textures in Aluminium Alloy Sheets", Materials Science Forum, Vol. 550, pp. 23-34, 2007

Online since:

July 2007





[1] W.B. Hutchinson, A. Oscarsson and Å. Karlsson: Mater. Sci. Tech. Vol. 5 (1989), p.1118.

[2] A.S. Malin and B.K. Chen: in Aluminum Alloys for Packaging, eds. J.G. Morris et al. (TMS, Warrendale PA 1993), p.251.

[3] J. Hirsch, P. Wagner and H. Schmiedel: Mater. Sci. Forum Vol. 217-222 (1996), p.641.

[4] B. Ren: in Aluminum Alloys for Packaging III, ed. S.K. Das (TMS, Warrendale PA 1998), p.49.

[5] J. Hirsch, K. Karhausen and P. Wagner: Mater. Sci. Forum Vol. 331-337 (2000), p.421.

[6] K. Marthinsen, S. Abtahi, K. Sjølstad, B. Holmedal, E. Nes, A. Johansen, J.A. Sæter, T. Furu, O. Engler, Z.J. Lok, J. Talamantes-Silva, C. Allen and C. Liu: Aluminium Vol. 80 (2004), p.729.

[7] M. Goerdeler, M. Crumbach, P. Mukhopadhyay, G. Gottstein, L. Neumann and R. Kopp: Aluminium Vol. 80 (2004), p.666.

[8] O. Engler: Proc. Thermec '2003, Mater. Sci. Forum Vol. 426-432 (2003), p.3655.

[9] O. Engler, L. Löchte and K. Karhausen: Proc. ICOTOM 14, Mater. Sci. Forum Vol. 495-497 (2005), p.555.

[10] O. Engler: Proc. ICAA 10, Mater. Sci. Forum Vol. 519-521 (2006), p.1563.

[11] V. Randle and O. Engler: Introduction to Texture Analysis: Macrotexture, Microtexture and Orientation Mapping (Gordon and Breach Sci. Publ., Amsterdam 2000).


[12] O. Engler and J. Hirsch: submitted to Mater. Sci. Eng. A (2006).

[13] F.J. Humphreys and M. Hatherly: in Recrystallization and Related Annealing Phenomena (Pergamon, Oxford 1995), p.397.

[14] I. Ansara, A.T. Dinsdale and M.H. Rand: Thermochemical Database for Light Metal Alloys (Final Report COST 507 V2, European Commission, Brussels 1998).

[15] N. Saunders: J. Japanese Inst. Light Metals Vol. 51 (2001), p.141.

[16] R. Becker and W. Döring: Ann. Phys. Vol. 32 (1938), p.128.

[17] M. Schneider, G. Gottstein, L. Löchte and J. Hirsch: Mater. Sci. Forum Vol. 396-402 (2002), p.637.

[18] G. Gottstein, M. Schneider and L. Löchte: in Proc. ICAA 9, eds. J.F. Nie, A.J. Morton and B.C. Muddle (Inst. Mater. Eng. Australasia Ltd. 2004), p.1116.

[19] J. Hirsch and K. Lücke: Acta Metall. Vol. 36 (1988), p.2883.

[20] U.F. Kocks, C.N. Tomé and H.R. Wenk: Texture and Anisotropy: Preferred Orientations and their Effect on Materials Properties (Cambridge Univ. Press, Cambridge UK 1998).

[21] M. Crumbach, G. Pomana, P. Wagner and G. Gottstein: in Proc. 1 st Joint Int. Conf. on Recrystallization and Grain Growth, eds. G. Gottstein and D.A. Molodov (Springer, Berlin 2001), p.1053.

[22] O. Engler: Adv. Eng. Mater. Vol. 4 (2002), p.181.

[23] O. Engler: Modell. Simul. Mater. Sci. Eng. Vol. 11 (2003), p.863.

[24] O. Engler, M. Crumbach and S. Li: Acta Mater. Vol. 53 (2005), p.2241.

[25] H.E. Vatne, K. Marthinsen, R. Ørsund and E. Nes: Metall. Trans. Vol. 27A (1996), p.4133.

[26] J.A. Sæter, B. Forbord, H.E. Vatne and E. Nes: in Proc. ICAA6, eds. T. Sato et al. (JILM, Japan 1998), p.113.

[27] H.E. Vatne, T. Furu, R. Ørsund and E. Nes: Acta Mater. Vol. 44 (1996), p.4463.


[28] O. Engler: Textures and Microstr. Vol. 32 (1999), p.197.

[29] O. Engler and H.E. Vatne: JOM Vol. 50 (1998), No. 6, p.23.

[30] R.A. Lebensohn and C.N. Tomé: Acta Metall. Mater. Vol. 41 (1993), p.2611.

[31] O. Engler and S. Kalz: Mater. Sci. Eng. Vol. A373 (2004), p.350.

[32] P. Van Houtte, G. Cauwenberg and E. Aernoudt: Mater. Sci. Eng. Vol. 95 (1987), p.115.

[33] R. Schouwenaars, P. Van Houtte, A. Van Bael, J. Winters and K. Mols: Text. Microstr. Vol. 26-27 (1996), p.553.

[34] M. Crumbach, G. Gottstein, L. Löchte, D. Piot, J. Driver, C.M. Allan and J.F. Savoie: Mater. Sci. Forum Vol. 396-402 (2002), p.357.