Intercritical Annealing Behaviour of an Ultrafine Grained C-Mn Steel Obtained by Hot Torsion Deformation


Article Preview

Several studies concerning ferrite grain refinement have been developed in recent the last years due to the recognised influence of such microstructures on steels properties. This work was focused on the evaluation of the microstructure and mechanical properties of an ultrafine grained CMn steel obtained by hot torsion deformation and intercritical annealing. After 5 min soaking at 900 and 1200°C, the samples of low carbon steel were quenched and then reheated. Hot torsion deformation was conducted at temperatures of 700 or 740°C. The torsion schedule consisted of 7 isothermal passes leading to a total true strain of ≈1 and generating an ultrafine and inhomogeneous microstructure with grain sizes of the order of 1-m, formed by strain-induced dynamic transformation (SIDT). The samples were heated up to 800oC and held for 1, 2 and 3 h. A more homogeneous microstructure and ferrite grain size were obtained after annealing The microhardness tests showed the reduction in hardness with the increase in annealing time. They also highlighted the effects of the ferrite grain size and the volume fractions of the microstructure constituents.



Edited by:

P. B. Prangnell and P. S. Bate




G. Azevedo et al., "Intercritical Annealing Behaviour of an Ultrafine Grained C-Mn Steel Obtained by Hot Torsion Deformation", Materials Science Forum, Vol. 550, pp. 471-476, 2007

Online since:

July 2007




[1] R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov, Mat. Sci. & Eng. A, Vol. A168 (1993), p.141.

[2] Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mat. Vol. 47 (1999), p.579.

[3] R. Ueji, N. Tsuji, Y. Saito, Y. Minamino, ISUGS 2001, Fukuoka, Japan. p.222.

[4] P.C. M Rodrigues, R. K. Brzuszek, D. B. Santos, ISUGS 2001 Fukuoka, Japan. p.138.

[5] P.J. Hurley, B.C. Muddle, P.D. Hodgson, Met. and Mat. Trans. A, Vol. 33A (2002), p.2985.

[6] J.W. Bowden, F.H. Samuel, J.J. Jonas, Met. and Mat. Trans. A, Vol. 22A (1991), p.2947.

[7] L.N. Pussegoda, J.J. Jonas, ISIJ International, Vol. 31 (1991), p.278.

[8] L.P. Karjalainen, T.M. Maccagno, J.J. Jonas, ISIJ Intern. Vol. 35 (1995), p.1523.

[9] A.B. Cota, R. Barbosa and D.B. Santos, J. of Mat. Proc. Tech. Vol. 100 (2000), p.156.

[10] S.B. Davenport, D.N. Hanlon, S. Van Der Zwaag. Scripta Mat. Vol. 46 (2002), p.413.

[11] K.W. Andrews, JISI, vol. 203 (1965), p.721.

[12] ASTM E562-83.

[13] G. Azevedo, R. Barbosa, E.V. Pereloma, D.B. Santos, Mat. Science and Eng. A, Vol. 402 (2005), p.98.

[14] R. Bengochea, B. López, I. Gutierrez, Met. and Mat. Trans., Vol. 29A (1998), p.417.

[15] G.L. Kelly, P.D. Hodgson, 42nd MWSP Conf. Proc., Vol. 38, Toronto, Canada (2000), p.515.

[16] Y. Choi , W. Y. Choo, D. Kwon, Scripta Mat., Vol. 45 (2001), p.1401.

[17] H. Beladi, G. L. Kelly, A. Shokouhi, P. D. Hodgson. Mat. Science and Eng. A, Vol. 367 (2004), p.152.

[18] M. Zhao, T. Hanamura, H. Qiu, K. Nagai, K. Yang., Scripta Mater., Vol. 54 (2006), p.1385.

[19] S. Takaki, K. Kawasaki, Y. Kimura, J. of Mat. Proc. Technol, Vol. 117 (2001) p.359.

[20] T. Hayashi, M. Saito, K. Tsuzaki, K. Nagai, 4th International Conference On Recrystallization And Related Phenomena (Rex'99). Conf. Proc. JIM, Tsukuba, Japan (1999) p.333.

[21] N. Tsuji, R. Ueji, Y. Minamino, Y. Saito, Scripta Mat., Vol. 46 (2002), p.305.

[22] I.B. Timokhina, J.J. Jonas, E.V. Pereloma., ISIJ Int. 45 (2005), p.867.

Fetching data from Crossref.
This may take some time to load.