Subgrain Rotation Recrystallization in Minerals


Article Preview

Subgrain rotation is a common mechanism of continuous dynamic recrystallization in minerals and some metals. The mechanism involves new grain boundary formation by progressive rotation of subgrains or subgrain boundary migration in regions with an orientation gradient. This paper reviews the status of our current knowledge of rotation recrystallization in minerals. In minerals a misorientation angle (θ) of 10˚ is often taken as the transition from subgrain boundary to grain boundary but recent studies on olivine indicate a much higher transition angle between 15-25˚. In contrast to a high transition angle, the onset of subgrain boundary mobility may occur at much lower angles between 3-10˚. In consequence, rotation recrystallization in minerals often involves an initial stage of subgrain rotation followed by subgrain growth once medium angle boundaries have formed. Current models assume that all subgrain boundaries increase in misorientation with strain. However, recent studies show that many different types of subgrain boundary develop in minerals. The formation of new high angle grain boundaries is only likely along some types of geometrically necessary boundary (GNB). The mineral halite (NaCl) is often quoted as the classic example of rotation recrystallization yet recent electron backscattered diffraction (EBSD) studies show that only limited grain sub-division occurs in NaCl polycrystals. This grain sub-division occurs on the scale of large subgrains that divide the old grain into a few domains and not by the rotation of the smaller equiaxed subgrains, as envisaged in current models. The small scale, equiaxed, mainly low angle network of subgrain boundaries that develop in many minerals may be incidental boundaries, as found in metals, or could be smaller length-scale GNBs. As minerals have high plastic anisotropy and a limited number of slip systems GNBs may dominate over incidental subgrain boundaries formed by trapping of statistically stored dislocations. New and extended models for rotation recrystallization are needed that consider i) incidental subgrain boundaries as well as different types of GNB, ii) the potential high mobility of medium angle (3-15˚) subgrain boundaries and iii) a link between the development of subgrain misorientation and texture development.



Edited by:

P. B. Prangnell and P. S. Bate




M.R. Drury and G.M. Pennock , "Subgrain Rotation Recrystallization in Minerals", Materials Science Forum, Vol. 550, pp. 95-104, 2007

Online since:

July 2007




[1] M. Guillope and J.P. Poirier: J. Geophys. Res. Vol. 84 (1979), p.5557.

[2] M.R. Drury and J.L. Urai: Tectonophysics Vol. 172 (1990), p.235.

[3] F.J. Humphreys and M. Hatherly: Recrystallization and related annealing phenomena (Pergamon, Oxford 1995).

[4] R.D. Doherty et al: Materials Sci. and Engineering A Vol. 238 (1997), p.219.

[5] S.M. Schmid, M. Paterson and J.N. Boland: Tectonophysics Vol. 65 (1980), p.245.

[6] P.D. Tungatt and F.J. Humphreys: Acta Metall. Vol. 32 (1984), p.1625.

[7] G. Hirth and J. Tullis: J. Structural Geology Vol. 14 (1992), p.145.

[8] M. Stipp, H. Stünitz, R. Heilbronner and S.M. Schmid: J. Structural Geology Vol. 24 (2002), p.1864.

[9] S.E. Ion, F.J. Humphreys and S.H. White: Acta Metall. Vol. 30 (1982), p. (1909).

[10] M.R. Drury, F.J. Humphreys and S.H. White: Phys. Earth Planetary Interiors Vol. 40 (1985) p.208.

[11] A. Galiev, R. Kaibyshev and G. Göttstein: Acta Mater. Vol. 49 (2001), p.1199.

[12] M.R. Drury and F.J. Humphreys: Acta Metall. Vol. 34 (1986), p.2259.

[13] M.R. Barnett and F. Montheillet: Acta Mater. Vol. 50 (2002), p.2285.

[14] H.J. McQueen and W. Blum: Materials Sci. and Engineering A Vol. 290 (2000) p.95.

[15] H.J. McQueen and M.E. Kassner: Materials Sci. and Engineering A Vol. 410-411(2005), p.58.

[16] N. Hansen and D. Juul Jensen: Proc. Trans. R. Soc. Lond. A Vol. 357 (1999), p.1447.

[17] A. Gholina, F.J. Humphreys and P.B. Prangnell: Acta Mater. Vol. 50 (2002), p.4461.

[18] H. Jazaeri and F.J. Humphreys: Acta Material. Vol. 52 (2004) p.3239.

[19] J.L. Urai, W. Means and G.S. Lister : Geophysical Monograph Vol. 36 (1986), p.161.

[20] J.L. Urai and M.W. Jessell: In Recrystallization and Grain Growth (Springer, Berlin 2001), Vol. 1, p.87.

[21] D.J. Prior, M. Bestmann, A. Halfpenny, E. Mariani, S. Piazolo, J. Tullis, and J. Wheeler: Mater. Sci. Forum Vols 467-470 (2004), p.545.


[22] S.H. White: Tectonophysics Vol. 39 (1977), p.143.

[23] J. Duyster and B. Stöckhert: Contrib. Mineral. Petrol. Vol. 140 (2001), p.567.

[24] R. de Kloe: Geologica Ultraiectina Vol. 201 (2001) PhD thesis, Utrecht University.

[25] J.P. Poirier: Creep of crystals (Cambridge University Press, 1985).

[26] S. Heinneman, R. Wirth, M. Gottschalk and G. Dresen: Phys. Chem. Minerals Vol. 32 (2005), p.229.

[27] J.P. Poirier and A. Nicolas: J. Geology Vol. 83 (1975), p.707.

[28] J. D. Fitz Gerald, M.A. Etheridge and R.H. Vernon: Textures and Microstructures Vol. 5 (1983), p.219.

[29] G.E. Lloyd and B. Freeman: J. Structural Geology Vol. 16 (1994), p.1675.

[30] J.P. Poirier: Materials Sci. and Engineering Vol. 13 (1974), p.191.

[31] W. Means and J.H. Ree: J. Structural Geology Vol. 10 (1988), p.765.

[32] D. Kuhlmann-Wilsdorf and N. Hansen: Scripta Metall. Mater. Vol. 25 (1991), p.1557.

[33] D.A. Hughes, Q. Liu, D.C. Chrzan and N. Hansen: Acta Mater. Vol. 45 (1997), p.105.

[34] W. Pantelon: Acta Mater. Vol. 46 (1998), p.451.

[35] D.P. Mika and P.R. Dawson: Acta Mater. Vol. 47 (1998), p.1355.

[36] S. V. Raj and G. M. Pharr: Materials Science and Engineering A, Vol. a122 (1989), p.233.

[37] W.B. Durham, C. Goetze and B. Blake: J. Geophys. Res. Vol. 82 (1977), p.5755.

[38] P.W. Trimby, D.J. Prior and J. Wheeler: J. Structural Geology Vol. 20 (1998), p.917.

[39] P.J. Hurley and F.J. Humphreys: Acta Mater. Vol. 51 (2003), p.1087.

[40] G.M. Pennock, M.R. Drury and C.J. Spiers: Mater. Sci. Forum Vol. 467-470 (2004), p.597.

[41] G.M. Pennock, M.R. Drury and C.J. Spiers: J. Structural Geology Vol. 27 (2005), p.2159.

[42] M.F. Ashby: Phil. Mag. Vol. 21 (1970), p.399.

[43] P.S. Bate: Proc. Trans. R. Soc. Lond. A Vol. 357 (1999), p.1589.

[44] W. D. Means and M. Jessell: Tectonophysics Vol. 127 (1986). P. 67.

[45] R.C. Gifkins: Metall. Trans. A Vol. 7 (1976), p.1225.

[46] F.J. Humphreys and M.R. Drury: In Aluminum Technology (Institute of Metals, London, 1986), Vol. 3, p.76. 1.

[47] H. Stünitz, J.D. Fitz Gerald and J. Tullis: Tectonophysics Vol. 372 (2003), p.215.

[48] M. Vernooij, K. Kunze and B. Den Brok: J. Structural Geology Vol. 28 (2006), p.1292.

[49] P.W. Trimby, M.R. Drury and C.J. Spiers: J. Structural Geology Vol. 22 (2000), p.1609.

[50] G.M. Pennock, M.R. Drury, P.W. Trimby and C.J. Spiers: J. Microscopy Vol. 205 (2002), p.285.

[51] B. Leiss and D.J. Barber: Tectonophysics Vol. 303 (1999), p.51.

[52] M. Bestmann and D.J. Prior: J. Structural Geology Vol. 25 (2003), p.1597.

[53] G.E. Lloyd: In Flow Processes in Faults and Shear Zones (Geol. Soc. London, Special Pub. 2004), p.39.

[54] J. Wheeler, Z. Jiang, D. Prior and J. Tullis : Mater. Sci. Forum Vol. 467-470 (2004), p.1243.

[55] S.L.A. Valcke, M.R. Drury, J.H.P. de Bresser and G.M. Pennock: Mater. Sci. Forum (this vol) (2006).

[56] J.H. P de Bresser, C.J. Peach, J.P.J. Reijs and C.J. Spiers: Geophys. Res. Letters Vol. 25 (1998), p.3459.

[57] I. Shimizu: Geophys. Res. Letters Vol. 25 (1998), p.4237.

[58] F. Gourdet and F. Montheillet: Acta Mater. Vol 51 (2003), p.2685.

[59] F.J. Humphreys: Acta Mater. Vol. 45 (1997), p.4231.

[60] F.J. Humphreys: Acta Mater. Vol. 45 (1997), p.5031.