Superplasticity of Ultrafine-Grained Aluminum Alloy Processed by ECAP and Warm Rolling


Article Preview

The ultrafine-grained (UFG) 1421 aluminum alloy processed by equal channel angular pressing (ECAP) has demonstrated enhanced superplasticity at low temperature and high strain rates. This UFG material was successfully rolled at temperatures of 330-370oC retaining small grain size and equiaxed grain structure. The microstructure of the UFG alloy subjected to warm rolling (WR) was studied, and the mechanical properties of the ECAP+WR samples with UFG structures were investigated. We have found that the rolled material exhibited not only the enhanced superplasticity, but also high strength at room temperature.



Materials Science Forum (Volumes 551-552)

Edited by:

K.F. Zhang




R. K. Islamgaliev et al., "Superplasticity of Ultrafine-Grained Aluminum Alloy Processed by ECAP and Warm Rolling", Materials Science Forum, Vols. 551-552, pp. 13-20, 2007

Online since:

July 2007




[1] R.Z. Valiev, R.K. Islamgaliev and I.V. Alexandrov: Prog. Mater. Sci. Vol. 45 (2000), p.103.

[2] The Langdon Symposium: Flow and forming of Crystalline Materials, eds, Y.T. Zhu, Z. Horita, K. Xia, P.B. Berbon and S.V. Raj, Mat. Sci. Eng. Vol. A 410-411 (2005) pp.1-496.

[3] R.Z. Valiev: Nature Materials. August, Vol. 3 (2004) p.511.

[4] T.G. Langdon, M. Furukawa, M. Nemoto and Z. Horita: JOM. Vol. 52, 4 (2000), p.30.

[5] S.X. McFadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev and A.K. Mukherjee: NATURE. Vol. 398, 4 (1999) p.684.

[6] R.S. Mishra, R.Z. Valiev, S.X. McFadden, R.K. Islamgaliev and A.K. Mukherjee: Phil. Mag. A, Vol. 81, 1 (2001) p.37.

[7] R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P. Berbon and T. Langdon: Scripta Mater. Vol. 37 (1997), p.724.

[8] T.G. Nieh, J. Wadsworth and O.D. Sherby. Superplasticity in Metals and Ceramics. - Cambridge University Press. 1997 - 290 p.

[9] K. Higashi and M. Mabuchi: Critical aspects of high strain rate superplasticity. Mat. Sci. Forum. Vol. 243-245 (1997), p.267.


[10] Z. Horita, M. Furukavwa, M. Nemoto, A.J. Barnes and T.G. Langdon: Acta Mater. Vol. 48 (2000), p.3633.

[11] R.K. Islamgaliev, N.F. Yunusova and R.Z. Valiev: Phys. Metals Metallogr. Vol. 94, 6 (2002), p.606.

[12] R.K. Islamgaliev, N.F. Yunusova, R.Z. Valiev, N.K. Tsenev, V.N. Perevezentsev and T.G. Langdon: Scripta Mater. Vol. 49 (2003), p.467.


[13] R. Grimes, R.J. Dashwood, H.M. Flower, M. Jackson, S. Katsas and G. Todd. Materials Science Forum. Vol. 447-448 (2004), p.213.


[14] D.A. Hughes, M.E. Kassner, M.G. Stout and J.S. Vetrano. JOM. Vol. 50, 6 (1998), p.16.

[15] O.B. Kulyasova, R.K. Islamgaliev and R.Z. Valiev: Phys. Metals Metallogr. Vol. 100, 3 (2005), p.277.

[16] R.K. Islamgaliev, N.F. Yunusova and R.Z. Valiev, In: Nanostructured Materials by High-Pressure Severe Plastic Deformation. NATO Science Series II. Edited by Y.T. Zhu and V. Varukhin. Springer. Vol. 212 (2006) p.299.


[17] J.S. Kallend, U.F. Kocks, A.D. Rollet and H. -R. Wenk: Mater. Sci. Eng. Vol. A132 (1991), p.1.