Superplasticity in Ultrafine Grained Magnesium Alloy AZ31 Prepared by Accumulative Roll Bonding


Article Preview

In this paper, an ultra-fine grained AZ31 magnesium alloy sheet with grain size less than 3μm was generated by three-run accumulative roll bonding of as cast alloy at a deformation temperature of 350°C and a reduction of 80% for each pass. The microstructures on the different ARB stages were observed and superplasticity examination in the ultrafine grained AZ31 alloy were carried out at a fixed temperature of 300°C and varied strain rate ranging from 10-4 to 10-1 s-1. It is indicated that significant grain refinement was mainly achieved in the first run and gradual uniformity of grain size in the next by continuous dynamic recrystalization. Besides, a superplastic deformation with a moderate elongation-to-fracture of 316% was obtained at a strain rate of 10-2 s-1 indicating a low temperature and high strain rate superplasticity, while a maximum elongation-to-fracture of 562% at10-4 s-1. The strain rate sensitivity exponent as high as of 0.34-0.41 implies the dominant role of grain boundary sliding in superplastic deformation at strain rate ranging from 10-3 to 10-2 s-1. The results indicate a possible approach to produce magnesium alloy sheet with fine grain and excellent deep drawing workability.



Materials Science Forum (Volumes 551-552)

Edited by:

K.F. Zhang




Q. F. Wang et al., "Superplasticity in Ultrafine Grained Magnesium Alloy AZ31 Prepared by Accumulative Roll Bonding", Materials Science Forum, Vols. 551-552, pp. 249-254, 2007

Online since:

July 2007




[1] O.D. Sherby, T.G. Nieh, and J. Wadsworth: Mater. Sci. Forum, Vol. 243-245 (1997), p.11.

[2] J. Goken, J. Bohlen, and N. Hort, et al.: Mater. Sci. Forum, Vol. 426-432 (2003), p.153.

[3] W.J. Kim, S.W. Chung, C.S. Chung and D. Kum: Acta Mater., Vol. 49 (2001), p.3337.

[4] S.W. Chung, K. Higashi and W.J. Kim: Mater. Sci. and Eng. A, Vol. 372 (2004), p.15.

[5] H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe and K. Higashi: Acta Mater., Vol. 47 (1999), p.3753.

[6] M. Mabuchi, K. Ameyama, H. Iwasaki and K. Higashi: Acta. Mater., Vol. 47(1999), p. (2047).

[7] C.L. Chen and M.J. Tan: Mater. Sci. Eng. A, Vol. 298 (2001), p.235.

[8] A. Galiyev and R. Kaibyshev: Scripta Mater., Vol. 51 (2004), p.89.

[9] H. Watanabe, T. Mukai, K. Ishikawa and K. Higashi: Scripta Mate., Vol. 46 (2002), p.851�.

[10] T.G. Nieh, A.J. Schwartz and J. Wadsworth: Mater Sci Eng A, Vol. 208 (1996), p.30.

[11] A. Uoya, T. Shibata, K. Higashi, A. Inoue and T. Masumoto: J Mater Res., Vol. 11(1996), p.2731.

[12] X. Wu and Y. Liu: Scripta Mater., Vol. 46 (2002), p.269.

[13] T. Mohri, M. Mabuchi and M. Nakamura: Mater Sci Eng A, Vol. 290 (2000), p.139.

[14] Y.H. Wei, Q.D. Wang, and Y.P. Zhu: Mater Sci Eng A, Vol. 360 (2003), p.107.

[15] J.C. Tan and M.J. Tan: Scripta Mater, Vol. 47 (2002), p.101.

[16] M.T. Pérez-Prado, J.A. del Valle and O.A. Ruano: Scripta Mater., Vol. 51 (2004), p.1093.

[17] Y. Saito, H. Utsunomiya, N. Tsuji and T. Sakai: Acta Mater., Vol. 47(1999), p.579.

[18] H. Watanabe and H. Tsutsui: Mater. Trans., Vol. 42 (2001), p.1022.

[19] G.E. Dieter: Mechanical metallurgy (Mc-Graw-Hill, 1986), p.611.

[20] Q.F. Wang, X.P. Xiao and J. F. Wei: in press. �.

[21] M. Furukawa, A. Utsonomiya and K. Matsubara: Acta Mater., Vol. 49(2001), p.3829.

[22] Z.G. Liu, H.J. Fecht and M. Umemotob: Mater Sci Eng A, Vol. 375-377 (2004), p.839.

[23] M.R. Barnett and F. Montheillet: Acta Mater., Vol. 50 (2002), p.2285.

[24] S. Tekeli and T.J. Davies: Mater. Sci. Eng. A, Vol. 297 (2001), p.168.

[25] J. Pilling and N. Ridley: Superplasticity in crystalline solids (Institute of Metals, London 1989), p.214.

Fetching data from Crossref.
This may take some time to load.