Superplastic Deformation Behavior of Electrodeposited Nickel Matrix Nanocomposite


Article Preview

In this paper, the superplastic deformation behaviour of a pulse electrodeposited Ni-SiC nanocomposite was further studied at temperatures ranging from 330 to 530oC. It was found that optimum temperature of the composite was 450oC, and the shape of its flow stress vs strain rate curves is similar to that of conventional superplastic materials. The microstructures of the composite before and after deformation were examined using SEM and TEM. Dislocations and deformation twinning were observed in the deformed samples, and there was significant grain growth during deformation. The deformation mechanisms were also discussed in the paper based on the experimental findings.



Materials Science Forum (Volumes 551-552)

Edited by:

K.F. Zhang




K.C. Chan et al., "Superplastic Deformation Behavior of Electrodeposited Nickel Matrix Nanocomposite", Materials Science Forum, Vols. 551-552, pp. 521-526, 2007

Online since:

July 2007




[1] S.X. Mcfadden, R.S. Mishra, R.Z. Valiev, A.P. Zhilyaev and A.K. Mukherjee: Nature, Vol. 398 (1999), p.684.

[2] S.X. Mcfadden, A.P. Zhilyaev, R.S. Mishra and A.K. Mukherjee: Mater. Lett., Vol. 45 (2000), p.345.

[3] F.A. Mohamed and Y. Li: Mater. Sci. and Eng., Vol. A298 (2001), p.1.

[4] G. F. Wang, K.C. Chan and K.F. Zhang: Scripta Materialia, Vol. 54 (2006), p.765.

[5] A.M. El-sherik and U. Erb: J. Mater. Sci., Vol. 30 (1995), p.5743.

[6] S. Shriram, S. Mohan, N.G. Renganathan and R. Venkatachalam: Trans. Inst. Met. Finish, Vol. 78 (2000), p.194.

[7] D.H. Jeong, F. Gonzalez, G. Palumbo, K.T. Aust and U. Erb: Scripta Mater., Vol. 44 (2001), p.493.

[8] L. Benea, P.L. Bonora, A. Borello, S. Martelli, F. Wenger, P. Ponthiaux and J. Galland: Solid State Ionics, Vol. 151 (2002), p.89.

[9] P. Gyftou, M. Stroumbouli, E.A. Pavlatou and N. Spyrellis: Trans. IMF, Vol. 80 (2002), p.88.


[10] K.C. Chan, C.L. Wang and K.F. Zhang: Mater. Trans., Vol. 45 (2004), p.2558.

[11] W.N. Lei, D. Zhu and N.S. Qu: Trans. IMF, Vol. 80 (2002), p.205.

[12] A.F. Zimmerman, D.G. Clark, K.T. Aust and U. Erb: Mater. Lett., Vol. 52 (2002), p.85.

[13] C.H. Xiao, R.A. Mirshams, S.H. Whang and W.M. Yin: Mater Sci. Eng., Vol. A301 (2001), p.35.

[14] A.F. Zimmerman, G. Palumbo, K.T. Aust and U. Erb: Mater. Sci. Eng., Vol. A328 (2002), p.137.

[15] A.K. Mukherjee, J.E. Bird and J.E. Dorn: Trans. ASM, Vol. 62 (1969), p.155.

[16] A.K. Mukherjee, in: Treatise Mater. Sci. Technol., edited by R.J. Arsenault, Volume 6 of Plastic Deformation of Materials, Academic Press, New York (1975).

[17] R.S. Mishra, R.Z. Valiev, S.X. Mcfadden, R.K. Islamgaliev and A.K. Mukherjee: Philosophical Magazine A, Vol. 81 (2001), p.37.

[18] K.C. Chan, C.L. Wang and K.F. Zhang: Scripta Materialia, Vol. 51 (2004), pp.605-609.

[19] B.D. Cullity and S.R. Stock: Elements of X-Ray Diffraction Third edition Prentice Hall Upper Saddle River, NJ 07458 (2001).

[20] R.S. Mishra, S.X. McFadden, R.Z. Valiev and A.K. Mukherjee: JOM, Vol. 51 (1999), p.37.

[21] I.A. Ovid'ko: Reviews on Advanced Materials Science, Vol. 10 (2005), p.89.

[22] F.D. Torre, H.V. Swygenhoven, R. Schaublin, P. Spatig and M. Victoria: Scripta Mater, Vol. 53 (2005), P. 23.