Mathematical Model for Super Plastic Flow in Advanced Structural Materials

Abstract:

Article Preview

Everything in the universe is a result of their own evolution, in consequence all advanced structural materials are physical objects spatially extended in a permanently cosmic connection with the advanced structural universe. In this context, the nature expansion rate of the universe (ξ u) was obtained in a similar way of super plastic flow in terms of the rate reaction theory, with the strong temperature dependence of strain rate as follow: exp 70( / sec)/ 2.26854593 . 18 1 0 − − = =         −         = = km Mpc s kT c Q H P P P u λ ξ Where, QP = the Planck activation energy of the system at the Planck scale (QP = 1.221x1028eV), λP = Planck length (λP = 1.62x10-35m), c = the speed of light (c = 299 792 458 m/s), (c/λP) = the overall frequency factor, k = the Boltzmann constant (k = 8.617x10-5eV/K), TP = the Planck temperature (TP = 1.010285625x1030K) and H0 = the Hubble constant. On the basis of this mathematical expression and their combination with the Orowan equation, it was obtained the mathematical model to predict the activation energy (Q) that is necessary to the glide cellular dislocations during deformation of the super plastic advanced structural materials. Consequently, in this work the application of this mathematical model for super plastic flow in advanced structural materials and the concept of cellular dislocation are reviewed in order to integrate in a general form the unified interpretation of Hubble flow, plastic flow and super plastic flow [1-3].

Info:

Periodical:

Materials Science Forum (Volumes 551-552)

Edited by:

K.F. Zhang

Pages:

67-72

Citation:

J. D. Muñoz-Andrade, "Mathematical Model for Super Plastic Flow in Advanced Structural Materials", Materials Science Forum, Vols. 551-552, pp. 67-72, 2007

Online since:

July 2007

Export:

Price:

$38.00

[1] J. D. Muñoz-Andrade: Doctorate Thesis, Facultad de Ingeniería de la Universidad Central de Venezuela, Caracas, Venezuela, In preparation for presentation.

[2] J. D. Muñoz-Andrade: Proceedings of the 9 th ESAFORM Conference on Material Forming, Edited by Neal Juster and Andrzej Rosochowski, Glasgow, United Kingdom, Publishing House Akapit, Kraków, Poland (2006), p.163.

[3] J. D. Muñoz-Andrade: Proceedings of the 8 th ESAFORM Conference on Material Forming, Editor: Prof. D. BANABIC, Cluj Napoca, Romania. The Publishing House of the Romanian Academy (2005), p.603.

[4] M. Roos: Introduction to Cosmology, Second Edition Wiley, London, UK Vol. 7 (2002), p.156.

[5] J. D. Muñoz-Andra: M. Sc. Thesis, Facultad de Ingeniería de la Universidad Central de Venezuela, Caracas, Venezuela Vol. 52-67 (1996), p.74.

[6] S.T. Yang and F.A. Mohamed: Metall. Mater. Trans. Vol. 26A (1995), p.493.

[7] J. A. Montemayor-Aldrete, J. D. Muñoz-Andrade, G. Torres-Villaseñor and A. Mendoza-Allende: Recent Res. Devel. Metallurg. & Materials Sci. Vol. 5 (2001), p.20.

DOI: https://doi.org/10.1023/a:1004821932099

[8] J. D. Muñoz-Andrade: Proceedings of the EURO-SPF´04, Ecole Des Mines d´Álbi Carmaux, eds,: G. Bernhart, T. Cutard and P. Lours, Cépadués-Editions, France (2004) p.25.

[9] J. D. Muñoz-Andrade: Mater. Sci. Forum Vols. 447-448 (2004) 85-90.

[10] A. Ma, F. Roters, D. Raabe, CP712, American Institute of Physics, USA (2004), p.83.

[11] Cheng X., Sungwon L. and T. G. Langdon: Mater. Sci. Forum Vols. 357-359 (2001), p.52.

[12] A. Ayensu and T. G. Langdon: Metall. Trans. Vol. 27A (1996), p.903.

[13] C. M. Sellars and W. J. MCG. Tegart: Mem. Sci. Rev. Mét. Vol. 63 (1961), p.731.

[14] Y. Ma and T. G. Langdon: Metall. Trans. Vol. 27A (1996), p.875.

[15] T. G. Nieh and J. Wadsworth: Acta metal. Mater. Vol. 38 (1990), p.1125.

[16] Albert Einstein, Relativity: The Special and the General Theory, Three Rivers Press, NewYork, USA (1961) vii.