Flux Evaluation in Anisotropic Heat Conduction Using the Modified Local Green’s Function Method (MLGFM): Comparative Studies

Abstract:

Article Preview

The Modified Local Green’s Function Method (MLGFM) is an integral method which uses appropriately chosen Green’s function projections obtained numerically with the aid of auxiliary finite element problems. Its applicability includes those cases for which a fundamental solution does not exist or is very cumbersome. The MLGFM was studied intensely in the 90´s with promising results, especially for tractions and heat fluxes at the boundaries. The present contribution compares this method for heat flux evaluation in anisotropic media with finite volumes and finite elements. The latter approximates heat fluxes using a superconvergent patch recovery scheme, whereas the former computes flux quantities directly at nodes. The numerical example uses linear elements and includes non-homogeneous temperature and flux boundary conditions.

Info:

Periodical:

Edited by:

Prof. Andreas Öchsner and José Grácio

Pages:

100-105

Citation:

P. A. Muñoz-Rojas and M. Vaz, "Flux Evaluation in Anisotropic Heat Conduction Using the Modified Local Green’s Function Method (MLGFM): Comparative Studies", Materials Science Forum, Vol. 553, pp. 100-105, 2007

Online since:

August 2007

Export:

Price:

$38.00

[1] M.N. Özisik: Heat Conduction (John Wiley & Sons, New York 1980).

[2] F.M.L. Traiano, R.M. Cotta, H.R.B. Orlande: Int. Comm. Heat Mass Transfer. Vol. 24 (1997), p.869.

[3] F. Kowsary, M. Arabi: Int. Comm. Heat Mass Transfer. Vol. 26 (1999), p.1163.

[4] Y.C. Shiah, C.Y. Lin: Int. Comm. Heat Mass Transfer. Vol. 29 (2002), p.1079.

[5] N.S. Mera, L. Elliott, D.B. Ingham, D. Lesnic: Eng. Anal. Bound. Elem. Vol. 25 (2001), p.115.

[6] N.S. Mera, L. Elliott, D.B. Ingham, D. Lesnic: Eng. Anal. Bound. Elem. Vol. 26 (2002), p.157.

[7] O.C. Zienkiewicz, R.L. Taylor: The Finite Element Method (McGraw-Hill, London 1994).

[8] R. Barbieri, C. L. Barcellos: Eng. Anal. Bound. Elem. Vol. 11 (1993), p.9.

[9] R. Barbieri, P.A. Munoz-Rojas, R.D. Machado: Eng. Anal. Bound. Elem. Vol. 22 (1998), p.141.

[10] R. Barbieri, P.A. Munoz-Rojas: Eng. Anal. Bound. Elem. Vol. 22 (1998), p.153.

[11] J.H. Ferziger, M. Perić: Computational Methods for Fluid Dynamics (Springer-Verlag, Heidelberg 1999).

[12] O.C. Zienkiewicz, J.Z. Zhu: Int. J. Numer. Meth. Engng. Vol. 33 (1992), p.1331.

[13] J.E. Akin: Finite Element Analysis with Error Estimators (Elsevier, Amsterdam 2005).

[14] P.T.R. Mendonça: Computation of Secondary Variables by a Modified Local Green´s Function Method (Ph.D. Thesis, University of Minnesota, USA 1995).

Fetching data from Crossref.
This may take some time to load.