Vibration Analysis of a Ni-Ti Shape Memory Alloy Rod


Article Preview

In this paper the effect of stress induced phase transformation on the vibration response of SMA structures has been studied. To this end, a Ni-Ti clamped-free rod in the superelastic range which is subjected to axial harmonic loading has been considered. Subsequently, the dynamic behavior of the superelastic rod has been analyzed using Auricchio’s superelastic model, which can reproduce the superelastic behavior of the sample during stress induced phase transformation, and Finite Element Method. Obtained Results show that due to the phase transformation the dynamic behavior of superelastic rod is highly nonlinear. Also, it can be deduced that superelastic components with large hysteresis loop has the potential for use in vibration attenuation of structures.



Edited by:

Prof. Andreas Öchsner and José Grácio




M. Ghazinejad and A. Shokuhfar, "Vibration Analysis of a Ni-Ti Shape Memory Alloy Rod", Materials Science Forum, Vol. 553, pp. 164-170, 2007

Online since:

August 2007




[1] E.J. Graesser, F.A. Cozarelli: J. Eng. Mech. ASCE Vol. 117, 11 (1991) p.590.

[2] A. Baz, S. Poh, J. Ro, J Gilheany J Sound Vib. Vol. 185, 1 (1995) p.171.

[3] Q. Chen, C. Levi: Smart Mater. Struct. Vol. 5 (1996) p.400.

[4] M.C. Piedboeuf, R. Gauvin: J Sound Vib. 214, 5 (1998) p.885.

[5] F. Gandhi, D. Wolons: Smart Mater. Struct. Vol. 8 (1999) p.49.

[6] W. Ostachowicz, M. Krawczuk, A. Zak: Finite Elem. Anal. Des. Vol. 32 (1999) p.71.

[7] M. Collet, E. Foltete, C. Lexcellent: Eur J. Mech. A/Solids Vol. 20 (2001) p.615.

[8] M. Dolce, D. Cardone : Int. J. Mechanical Sciences Vol. 43 (2001) p.2631.

[9] R. DesRoches, M. Delemont: Engineering Structures Vol. 24 (2002) p.325.

[10] K-T. Lau: Mater. Des. Vol. 23 (2002) p.741.

[11] F. Auricchio, E. Sacco: Int. J. Non-linear Mechanics. Vol. 32 (1997) p.1101.

[12] K. Tanaka: Res. Mech., Int. J. Struct. Mach. Mater. Sci. Vol. 18 (1986) p.251.

[13] C. Liang, C.A. Rogers: J. Intell. Mater. Syst. Struct. Vol. 1 (1990) p.207.

[14] B. Raniecki, C. Lexecellent, K. Tanaka: Arch. Mech. Vol. 44 (1992) p.261.

[15] L.C. Brinson: J. Intell. Mater. Syst. Struct. Vol. 4 (1993) p.229 Figure 4. Magnitude of displacement at the end of the rod for fixed austenite (dashed line) and superelastic (continuous line) cases.