Characterization of Al/SiC Nanocomposite Prepared by Mechanical Alloying Method


Article Preview

In this research work, a high-energy ball mill has been applied to prepare an Al/SiC nanocomposite. The formation mechanism of the nanocomposite was investigated. This nanocomposite contained the nanocrystalline characteristics. Crystallite size, lattice strain and particle size of the nanocomposite as a function of milling time were determined. SEM micrographs showed that the nanocomposite powders agglomerated after milling. The particle size analysis confirmed the agglomeration of the nanocomposite particles. TEM observations showed that the SiC particles were in the nanometer size and these particles embedded in the Al matrix, and the nanocomposite produced in the final stage of mechanical alloying. In addition, a simple model checked for the refinement of the crystallite and the particle size of nanocomposite.



Edited by:

Prof. Andreas Öchsner and José Grácio




A. Shokuhfar et al., "Characterization of Al/SiC Nanocomposite Prepared by Mechanical Alloying Method", Materials Science Forum, Vol. 553, pp. 257-265, 2007

Online since:

August 2007




[1] M. S. El-Eskandarani: Mechanical Alloying for Fabrication of Advanced Engineering Materials (Noyes Publications/William Andrew Publishing, Norwich, NY 2004).

[2] M. S. El-Eskandarani: J. alloys and Compounds Vol. 279 (1998), p.263.

[3] J. W. Kaczmar, K. Pietrzak, W. Wlosinski: J. Mater. Process. Tech. Vol. 106 (2000), p.58.

[4] S. Suresh, A. Mortensen, A. Needleman: Fundamental of Metal Matrix Composites (Batterworth-Heineman, London 1993).

[5] J. C. Lee, J. I. Lee, H. I. Lee: Scripta Mater. Vol. 35 (1996), p.721.

[6] D. L. Zhang: Progr. Mater. Sci. Vol. 49 (2004), p.537.

[7] K. D. Woo, D. L. Zhang: Curr. Appl. Phys. Vol. 4 (2004), p.175.

[8] M. J. Mayo: Int. Mater. Rev. Vol. 41 (1996), p.85.

[9] S. Bernotat, K. Schönert, In: Size Reduction, edited by K. Schönert, Vol. B2 of Ullmann's Encyclopedia of Industrial Chemistry, chapter, 5, VCH-Verlagsgesellschhaft, Weinheim, Germany (1988).

[10] D. Tromans, J. A. Meech: Miner. Eng. Vol. 17 (2004), p.1.

[11] R. Sankar, P. Sigh: Mater. Lett. Vol. 36 (1998), p.201.

[12] S. J. Hong, P. W. Kao: Mater. Sci. Eng. Vol. A119 (1989), p.153.

[13] K. Hanada, K. A. Khor, M. J. Tan, Y. Murakoshi, H. Negishi, T. Sano: J. Mater. Process. Tech. Vol. 67 (1997), p.8.

[14] L. Lu, M. O. Lai, C. W. Ng: Mater. Sci. Eng. Vol. A252 (2003), p.203.

[15] L. Lu, M. O. Lai: Mechanical Alloying (Kluwer Academic Publishers 1998).

[16] S. Li, K. Wang, L. Sun, Z. Wang: Scripta Metall. Mater. Vol. 27 (1992), p.437.

[17] B. D. Cullity, S. R. Stock, S. Stock: Elements of X-Ray Diffraction (3rd Edition) (Prentice Hall, NJ 2001).

[18] C. Suryanarayana: Progr. Mater. Sci. Vol. 46 (2001), p.1.

[19] J. S. Benjamin, T. E. Volin: Met. Trans. Vol. 5 (1974), p. (1929).

[20] B. S. Murty, S. Ranganathan: Int. Mater. Rev. Vol. 43 (1998), p.101.

Fetching data from Crossref.
This may take some time to load.