On the Thermal Conductivity of Adhesively Bonded and Sintered Hollow Sphere Structures (HSS)


Article Preview

This paper is on the geometrical effective thermal conductivity of hollow metal sphere structures. Two different technologies of joining, namely adhesive bonding and sintering, are considered. The spheres are arranged in the nodes of a cubic primitive lattice and connected by an adhesive layer, respectively directly joined by sintering. Furthermore, the influence of the cell wall thickness of the spheres on the thermal conductivity is investigated.



Edited by:

Prof. Andreas Öchsner and José Grácio




T. Fiedler and A. Öchsner, "On the Thermal Conductivity of Adhesively Bonded and Sintered Hollow Sphere Structures (HSS)", Materials Science Forum, Vol. 553, pp. 39-44, 2007

Online since:

August 2007




[1] H.P. Degischer and B. Kriszt, editors. Handbook of Cellular Metals. WILEY-VCH, Weinheim, (2002).

[2] A. ¨Ochsner, M. Tane, and H. Nakajima. Prediction of the thermal properties of lotus-type and quasi-isotropic porous metals: Numerical and analytical methods. Materials Letters, 60: 2690- 2694, (2006).

DOI: https://doi.org/10.1016/j.matlet.2006.01.067

[3] T. Fiedler, E. Pesetskaya, A. ¨Ochsner, and J. Gr´acio. Calculations of the thermal conductivity of porous materials. Materials Science Forum, 514-516: 754-758, (2006).

DOI: https://doi.org/10.4028/www.scientific.net/msf.514-516.754

[4] C.Y. Zhao, T.J. Lu, H.P. Hodson, and J.D. Jackson. The temperature dependence of effective thermal conductivity of open-celled steel alloy foams. Materials Science and Engineering A, 367: 123131, (2004).

DOI: https://doi.org/10.1016/j.msea.2003.10.241

[5] J.W. Paek, B.H. Kang, S.Y. Kim, and J.M. Hyun. Effective thermal conductivity and permeability of aluminium foam materials. Int. J. Thermophys., 21: 453-464, (2000).

[6] W. Lu, C.Y. Zhao, and S.A. Tassou. Thermal analysis on metal-foam filled heat exchangers. part 1: Metal-foam filled pipes. International Journal of Heat and Mass Transfer, in Press, (2006).

DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.012

[7] T. J. LU, H. A. STONE, and M. F. ASHBY. Heat transfer in open-cell metal foams. Acta mater., 46: 3619-3635, (1998).

DOI: https://doi.org/10.1016/s1359-6454(98)00031-7

[8] K. Boomsma, D. Poulikakos, and F. Zwick. Metal foams as compact high performance heat exchangers. Mechanics of Materials, 35: 1161-1176, (2003).

DOI: https://doi.org/10.1016/j.mechmat.2003.02.001

[9] T.J. LU and C. CHEN. Thermal transport and fire retardance properties of cellular aluminium alloys. Acta mater., 47: 1469-1485, (1999).

DOI: https://doi.org/10.1016/s1359-6454(99)00037-3

[10] C. K¨orner and R.F. Singer. Processing of metal foams - challenges and opportunities. Adv. Eng. Mater., 2: 159-165, (2000).

[11] U. Ramamurty and A. Paul. Variability in mechanical properties of a metal foam. Acta Materialia, 52: 869-876, (2004).

DOI: https://doi.org/10.1016/j.actamat.2003.10.021

[12] C.Y. Zhao, T.J. Lu, and H.P. Hodson. Natural convection in metal foams with open cells. International Journal of Mass and Heat Transfer, 48: 24522463, (2005).

DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.01.002

[13] T.J. Lu. Int. J. Heat Mass Tran., 42: 2031, (1999).

[14] A. ¨Ochsner and J. Gr´acio. In Proc. Applications of Porous Media, page 409, Evora, (2004).

[15] Gerd Habenicht, editor. Kleben Grundlagen, Technologien, Anwendung. Springer-Verlag, New York, (2002).