Influence of the Morphology of Joining on the Heat Transfer Properties of Periodic Metal Hollow Sphere Structures

Abstract:

Article Preview

Hollow sphere structures (HSS) constitute a group of innovative materials which are characterised by more constant material properties compared to classical cellular metals [1]. Their big potential lies within multifunctional applications where combinations of their proper- ties yield symbiotic advantages. In the scope of this paper their effective thermal conductivity is investigated. In addition to the analysis of the dependency of this material parameter on the conductivities of the base materials and the sphere wall thickness, special focus is given to the influence of the morphology of joining.

Info:

Periodical:

Edited by:

Prof. Andreas Öchsner and José Grácio

Pages:

45-50

Citation:

T. Fiedler and A. Öchsner, "Influence of the Morphology of Joining on the Heat Transfer Properties of Periodic Metal Hollow Sphere Structures", Materials Science Forum, Vol. 553, pp. 45-50, 2007

Online since:

August 2007

Export:

Price:

$38.00

[1] U. Ramamurty and A. Paul. Variability in mechanical properties of a metal foam. Acta Materialia, 52: 869-876, (2004).

DOI: https://doi.org/10.1016/j.actamat.2003.10.021

[2] H.P. Degischer and B. Kriszt, editors. Handbook of Cellular Metals. WILEY-VCH, Weinheim, (2002).

[3] W. Lu, C.Y. Zhao, and S.A. Tassou. Thermal analysis on metal-foam filled heat exchangers. part 1: Metal-foam filled pipes. International Journal of Heat and Mass Transfer, in Press, (2006).

DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.12.012

[4] T. J. LU, H. A. STONE, and M. F. ASHBY. Heat transfer in open-cell metal foams. Acta mater., 46: 3619-3635, (1998).

DOI: https://doi.org/10.1016/s1359-6454(98)00031-7

[5] K. Boomsma, D. Poulikakos, and F. Zwick. Metal foams as compact high performance heat exchangers. Mechanics of Materials, 35: 1161-1176, (2003).

DOI: https://doi.org/10.1016/j.mechmat.2003.02.001

[6] T.J. LU and C. CHEN. Thermal transport and fire retardance properties of cellular aluminium alloys. Acta mater., 47: 1469-1485, (1999).

DOI: https://doi.org/10.1016/s1359-6454(99)00037-3

[7] C. K¨orner and R.F. Singer. Processing of metal foams - challenges and opportunities. Adv. Eng. Mater., 2: 159-165, (2000).

[8] W.S. Sanders and L.J. Gibson. Mechanics of hollow sphere foams. Materials Science and Engineering A, 347: 70-85, (2003).

[9] W.S. Sanders and L.J. Gibson. Mechanics of bcc and fcc hollow-sphere foams. Materials Science and Engineering A, 352: 150-161, (2003).

DOI: https://doi.org/10.1016/s0921-5093(02)00890-0

[10] U. Waag, L. Schneider, P. L¨othman, and G. Stephani. Metallic hollow spheres materials for the future. Metal Powder Report, 55: 29-33, (2000).

[11] T.J. Lu. Int. J. Heat Mass Tran., 42: 2031, (1999).

[12] A. ¨Ochsner and J. Gr´acio. In Proc. Applications of Porous Media, page 409, Evora, (2004).

[13] T. Fiedler, E. Pesetskaya, A. ¨Ochsner, and J. Gr´acio. Numerical and analytical calculation of the orthotropic heat transfer properties of fibre-reinforced materials. Material Science and Engineering Technology, 36(10), (2005).

DOI: https://doi.org/10.1002/mawe.200500905

[14] Gerd Habenicht, editor. Kleben Grundlagen, Technologien, Anwendung. Springer-Verlag, New York, (2002).