Oxynitride Glasses: Preparation, Properties and Implications for Mechanical Behaviour of Silicon Nitride


Article Preview

Oxynitride glasses are found at grain boundaries, i.e. triple point junctions and intergranular films, in silicon nitride based materials as a result of cooling of liquid phases formed by reaction of sintering additives with silicon nitride and silica present on the nitride surface during the densification of the ceramics. The glass chemistry, particularly the content of modifying cation, usually Y or a rare earth (RE) ion, and the volume fractions of these oxynitride glass phases within the ceramic affect the properties of silicon nitride such as fracture toughness and creep at high temperature. As nitrogen substitutes for oxygen in silicate and alumino-silicate glasses, increases are observed in glass transition and softening temperatures, viscosities (by two to three orders of magnitude), elastic moduli and microhardness. If changes are made to the RE:Si:Al ratios or as the size of the rare earth cation decreases, properties such as viscosity can be increased by a further two to three orders of magnitude. These effects have a strong impact on the mechanical properties of silicon nitride based ceramics, especially creep resistance. This paper provides an overview of previous work on oxynitride glasses and outlines the effect of glass composition on their properties and discusses the implications for high temperature behaviour of Si3N4 ceramics.



Edited by:

Hasan Mandal




S. Hampshire and M. J. Pomeroy, "Oxynitride Glasses: Preparation, Properties and Implications for Mechanical Behaviour of Silicon Nitride ", Materials Science Forum, Vol. 554, pp. 11-16, 2007

Online since:

August 2007




[1] S. Hampshire: J. Non-cryst. Sol., 316 (2003), p.64.

[2] F. L. Riley: J. Am. Ceram. Soc., 83 (2002), p.245.

[3] M. H. Lewis, B. D. Powell, P. Drew, R.J. Lumby, B. North and A.J. Taylor: J. Mater. Sci. 12 (1977), p.61.

[4] S. Hampshire and K. H. Jack: Proc. Brit. Ceram. Soc. 31 (1981), p.37.

[5] S. Sakka: J. Non-cryst. Sol., 181 (1995), p.215.

[6] P .F. Becher, S. B. Waters, C. G. Westmoreland and L. Riester: J. Am. Ceram. Soc. 85 (2002), p.897.

[7] S. Hampshire, R. A. L. Drew and K. H. Jack: Phys. Chem. Glasses, 26 (1985), p.182.

[8] E. Y. Sun, P. F. Becher, C. H. Hsueh, G.S. Painter, S. B. Waters, S. L. Hwang and M. J. Hoffmann: Acta Materialia, 47 (1999), p.2777.

[9] M. M. Chadwick, R. S. Jupp and D. S. Wilkinson: J. Am. Ceram. Soc. 76 (1993), p.385.

[10] W. E. Luecke and S. M. Wiederhorn: J. Am. Ceram. Soc., 82 (1999), p.2769.

[11] S. Hampshire, E. Nestor, R. Flynn, J. -L. Besson, T. Rouxel, H. Lemercier, P. Goursat, M. Sebai, D. P. Thompson and K. Liddell: J. Euro. Ceram. Soc., 14 (1994), p.261.

DOI: https://doi.org/10.1016/0955-2219(94)90095-7

[12] M. Ohashi, K. Nakamura, K. Hirao, S. Kanzaki, S. Hampshire: J. Am. Ceram. Soc. 75 (1995), p.71.

[13] R. Ramesh, E. Nestor, M. Pomeroy and S. Hampshire: J. Euro. Ceram. Soc. 17 (1997), p. (1933).

[14] Y. Menke, V. Peltier-Baron and S. Hampshire: J. Non-Cryst. Solids, 276 (2000), p.145.

[15] H. J. Kleebe, W. Braue, H. Schmidt, G. Pezzotti and G. Ziegler: J. Euro. Ceram. Soc. 16 (1996), p.339.

[16] N. Shibata, S. J. Pennycook, T. R. Gosnell, G. S. Painter, W. A. Shelton and P. F. Becher: Nature 428 (2004), p.730.