Carbothermal Reduction and Nitridation of Çanakkale Origin Kaolin for SiAlON Powder Production


Article Preview

SiAlON ceramics were successfully produced in the form of powders from high purity kaolin, a hydrated aluminium silicate, Al2Si2O5(OH)4 type of clay mineral (comprises 83.85% kaolinite, 13.59% quartz, 0.88% feldspar, 1.37% others) of Canakkale-Can origin. Factors affecting SiAlON powder production were temperature, holding time, gas-flow rate and preparation methods. System optimisation was achieved following the results succeeded from numerous testing and characterisation (with XRD, SEM, EDS, BET, etc.) of each test. Changing in gas flow rate, temperature and holding time at plateau temperature had influences on the final powder yield, their morphologies and phase formation. The best conversion of kaolin clay mineral to SiAlON ceramic powder was the test run at 1475oC for 4 hour under 1 lt/min N2-flow. Product after the process was mainly of β'- Si3Al3O3N5 (z=3) powder along with small amounts of Al2O3, mullite and AlN phases. Some powder product exhibits furry type of wiskers morphology, which may be useful for using as a reinforcing material in particulate composite bodies.



Edited by:

Hasan Mandal




Z. Tatli et al., "Carbothermal Reduction and Nitridation of Çanakkale Origin Kaolin for SiAlON Powder Production", Materials Science Forum, Vol. 554, pp. 169-174, 2007

Online since:

August 2007




[1] F. L. Riley (Ed. ): Nitrogen Ceramics, NATO Advanced Study Institutes Applied Science, series No. 23, Noordholf International, Leyden, (1974).

[2] R. A. Andrievskii and I.I. Spivak: Silicon nitride and materials on its base, Metallurgiya, Moscow, (1984).

[3] F. L. Riley: J. Amer. Ceram. Soc. Vol. 83 (2) (2000), p.245.

[4] K. H. Jack: J. Mater. Sci. Vol. 11 (1976), p.1135.

[5] Y. Oyama: Jpn. J. Appl. Phys. Vol. 11 (1972), p.750.

[6] C. C. Sorrell and E. R. McCartney: Mater. Forum Vol. 9 (1972), p.148.

[7] N. E. Cother and P. Hodgson: Br. Ceram. Trans. J. Vol. 81 (1982), p.141.

[8] K. H. Jack and W.I. Wilson: Nature Vol. 238 (1972), p.28.

[9] S. B. Hanna and N.M. Ghoneim: Interceramics Vol. 35 (1985), p.42.

[10] J. E. Gilbert and A. Mosset: Mater. Res. Bull. Vol. 32 (1997), p.1441.

[11] K. H. Jack: The crystal chemistry of the sialons and related nitrogen ceramics, in: F.L. Riely (Ed. ), Nitrogen Ceramics. Noordhoff International, Leyden, The Netherlands, (1976), p.109.

DOI: 10.1007/978-94-010-1298-0_7

[12] M. H. Lewis, B. D. Powell and P. Drew: Nitrogen Ceramics F.L. Riely (Ed. ) Noordhoff International, Leyden, The Netherlands, Vol 12 (1977), pp.61-74.

[13] J. G. Lee, I. B. Cutler: Am. Ceram. Soc. Bull. Vol. 58(9), (1979), pp.869-871.

[14] X. J. Liu, X. W. Sun, J. J. Zhang, X. P. Pu and Q. M. Ge, & L. P. Huang: Materials Research Bulletin, Vol. 38, (2003), p.1939-(1948).

[15] F. K. Van Dijen, & R. Metselaar: Reaction-rate-limiting steps in carbothermal reduction processes. Vol. 68(1), (1985), pp.16-19.

DOI: 10.1002/chin.198517030

[16] J. Mukerji, S. Bandyopadhyay: Adv. Ceram. Mater. Vol. 3 (4) (1988), pp.369-373.

[17] H. L. Lee, H. J. Lim, S. Kim and H. B. Lee: J. Am. Ceram. Ceram. Soc. Vol. 72 (8) (1989), p.1458.

[18] J.C.T. Van der Heijde, R.A. Terpstra, J.W.T. Van Rutten, R. Metselaar: J. Eur. Ceram. Ceram. Soc. Vol. 17 (1997), pp.319-326.

[19] J. Zheng and B. Forslund: J. Eur. Ceram. Soc. Vol. 19 (1999), pp.175-185.

[20] F. K. Van Dijen, R. Metselaar and C.A.M. Siskens: J. Am. Ceram. Soc. Vol. 68 (1985), pp.16-19.

[21] M. Hoch and K. M. Nair: Am. Ceram. Soc. Bull. Vol. 58 (1979), pp.191-193.

[22] Y. W Cho and J. A. Charles: Synthesis of Nitrogen Ceramic Powders by Carbothermal Reduction and Nitridation, Mater. Sci. Tech. Vol. 7, (1991), pp.399-406.

Fetching data from Crossref.
This may take some time to load.