A Model of Gamma-Ray Irradiation Effects in Silicon Dioxide Films and on Silicon Dioxide - Silicon Interface


Article Preview

The gamma-ray irradiation causes positive charge traps formation in silicon dioxide films and at silicon dioxide - silicon interface of MOS devices, and the threshold voltage shift in MOS transistors. Here, the Monte Carlo model was used to develop an approach for estimating gammaray induced traps spatially distributed in silicon dioxide films. This is combined with the model of energy distributed traps at silicon dioxide - silicon interface. The developed model enables gammaray induced charge and threshold voltage shift determination as a function of gamma-ray doses. The threshold voltage measurements at a single specified current, both of radiation sensitive and radiation hardened MOS transistors irradiated with different doses of gamma-ray are compared with the developed model and good agreement are obtained.



Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković




M. Odalović and D. Petković, "A Model of Gamma-Ray Irradiation Effects in Silicon Dioxide Films and on Silicon Dioxide - Silicon Interface", Materials Science Forum, Vol. 555, pp. 147-152, 2007

Online since:

September 2007




[1] T.P. Ma and P.V. Dressendorfer: Ionizing radiation effects in MOS devices and circuits (Wiley, New York 1989).

[2] H.L. Hughes and J.M. Benedetto: IEEE Trans. on Nuclear Science Vol. 50 (2003), p.500.

[3] A.G. Holmes-Siedle: Nuclear Instruments and Methods Vol. 121(1974), p.169.

[4] M. Pejović, S. Golubović, G. Ristić and M. Odalović: Japan. J. Appl. Phys. Vol. 33 (1994), p.986.

[5] M. Odalović, B. Vučković, I. Manić and Z. Pavlović: Proc. 21 st International Conference on Microelectronics, Niš, Vol. 1 (1997), p.357.

[6] Z. Savić and D. Petković: Proc. 18 th Yugoslav Symp. on Radiation Protection, Beograd, May, 1993, pp.139-142.

[7] T.R. Oldham and F.B. McLean: IEEE Trans. on Nuclear Science Vol. 50 (2003), p.483.

[8] M. de Almeida and M. Moralles: Brazil. J. of Physics Vol. 35 (2005), p.741.

[9] S.M. Sze: Physics of semiconductor devices (Wiley, New York 1981).

[10] J.H. Stathis and S. Zafar: Microelectronics Reliability Vol. 46 (2006), p.270.

[11] V.S. Pershenkov, S.V. Cherepko, A.V. Sagoyan, V.V. Belyakov, V.N. Ulimov, V.V. Abramov, A.V. Shalnov and V.I. Rusanovsky: IEEE Trans. on Nuclear Science Vol. 43 (1996), p.2579.

DOI: https://doi.org/10.1109/23.556839

[12] E. Bendada and K. Rais: Eur. Phys. J. AP Vol. 5 (1999), p.91. Fig. 6 Threshold voltage shift vs. dose dependencies for different oxide thicknesses. Experimental results are previously reported in.

[6] 1 10 100 0 1 2 3 4 5 6 7 8 9 10 pMOS RADFET oxide thickness 110 nm 314 nm 727 nm 1226 nm dots - experiment. lines - calculated Dose [Gy] ∆∆∆∆Vth [V].