Dielectric and Ferroelectric Properties of BaTi1-xSnxO3 Multilayered Ceramics


Article Preview

Multilayered BaTi1-xSnxO3 (BTS) ceramics with different Ti/Sn ratios were produced by pressing and sintering at 1420 oC for 2 hours. X-ray diffractometry, scanning electron microscopy and energy dispersive spectroscopy were used for structural, microstructural and elemental analysis, respectively. The dielectric and ferroelectric behavior of sintered samples was studied, too. It is found that in ingredient materials, with increasing Sn content, the tetragonality decreases; Curie temperature moves towards room temperature, while the maximum of the dielectric constant increases, and also, they becomes less hysteretic. It is noticed that multilayered BTS ceramics with different Ti/Sn contents have a broad transition temperature and show a relatively high dielectric constant in a wide temperature range. It is shown that dielectric properties of these materials may be modified by a combination of different BTS powders as well as layers number.



Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković




S. Marković et al., "Dielectric and Ferroelectric Properties of BaTi1-xSnxO3 Multilayered Ceramics", Materials Science Forum, Vol. 555, pp. 249-254, 2007

Online since:

September 2007




[1] C.C.M. Wu, M. Kahn and W. Moy: J. Amer. Ceram. Soc. Vol. 97(3) (1996), p.809.

[2] M. Koizumi: Int. J. SHS Vol. 6(3) (1997), p.295.

[3] C. Chu, J. Zhu, Z. Yin and S. Wang: Mater. Sci. Eng. A Vol. 271 (1999), p.95.

[4] J. -H. Jeon, Y. -D. Hahn and H. -D. Kim: J. Eur. Ceram. Soc. Vol. 21 (2001), p.1653.

[5] J. -H. Jeon: J. Eur. Ceram. Soc. Vol. 24 (2004), p.1045.

[6] W. -K. Chang, S. -F. Hsien, Y. -H. Lee, K. -N. Chen, N. -C. Wu and A.A. Wang: J. Mat. Sci. Vol. 33 (1998), p.1765.

[7] N. Yasuda, H. Ohwa and S. Asano: Jpn. J. Appl. Phys. Vol. 35 (1996), p.5099.

[8] F.D. Morrison, D.C. Sinclair and A.R. West: J. Appl. Phys. Vol. 86 (1999), p.6355.

[9] R. Farhi, M. El Marssi, A. Simon and J. Ravez: Eur. Phys. J. B Vol. 9 (1999), p.599.

[10] N. Yasuda, H. Ohwa and K. Arai: J. Mat. Sci. Letters Vol. 16 (1997), p.1315.

[11] T. Wang, X.M. Chen and X.H. Zheng: J. of Electroceramics Vol. 11 (2003), p.173.

[12] R. Steinhausen, A. Kouvatov, H. Beige, H.T. Langhammer and H. -P. Abicht: J. Eur. Ceram. Soc. Vol. 24 (2004), p.1677.

[13] U. Straube, H.T. Langhammer, H. -P. Abicht and H. Beige: J. Eur. Ceram. Soc. Vol. 19 (1999), p.1171.

[14] V. Mueller, L. Jager, H. Beige, H. -P. Abicht and T. Muller: Solid State Comm. Vol. 129 (2004), p.757.

[15] R. Steinhausen, A. Kouvatov, C. Pientschke, H.T. Langhammer, W. Seifert, H. Beige and H. -P. Abicht: Integrated Ferroelectrics Vol. 63 (2004), p.15.

DOI: 10.1080/10584580490458360

[16] S. Markovic, M. Mitric, N. Cvjeticanin and D. Uskokovic: Mat. Sci. Forum Vol. 518 (2006), p.241.

[17] S. Markovic, M. Mitric, N. Cvjeticanin and D. Uskokovic: J. Eur. Ceram. Soc. Vol. 27 (2007), p.505.

[18] H.T. Martirena and J.C. Burfoot: Ferroelectrics Vol. 7 (1974), p.151.

[19] R.M. German: Sintering Theory and Practice (John Wiley & Sons, INC, New York, USA 1996).

[20] H. Schmelz and A. Meyer: Ceram. Forum Int. Vol. 59 (1982), p.436.

Fetching data from Crossref.
This may take some time to load.