Polystyrene-Polymethylmethacrylate Block Copolymers for Lithographically Assisted Bottom-Up Assembly of Nanostructures


Article Preview

Polystyrene-polymethylmethacrylate (PS-PMMA) block copolymers are well known to exhibit microphase separation to form a series of regular structures with local periodic arrangements of the blocks. By developing films of PS-PMMA within topographically patterned silicon (100) substrates (with photolithographically defined rectangular channels of depth 60 nm and widths 166 – 433 nm) these irregular arrangements form highly periodic structures where the features are parallel to the side walls of the channels. However, the use of silicon substrates leads to problems in processing of these films. PS-PMMA does not wet the surface, and this results in island formation on flat substrates. On channel etched substrates this phenomena ensures that the thickness of the films is irregular and poorly defined alignment is seen. Detailed considerations of this polymer system suggest that feature sizes below 25 nm are not realisable. The results suggest other copolymer systems should be studied.



Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković




F. Borsetto et al., "Polystyrene-Polymethylmethacrylate Block Copolymers for Lithographically Assisted Bottom-Up Assembly of Nanostructures", Materials Science Forum, Vol. 555, pp. 29-34, 2007

Online since:

September 2007




[1] ITRS road map 2005: Y. Xia and G.M. Whitesides: Angew. Chem. Int. Edit. Vol. 37 (1998), p.550.

[2] Y. Chen and A. Pepin: Electrophoresis Vol. 22 (2001), p.187.

[3] See for example: C. Park, J. Yoon and E.L. Thomas: Polymer Vol. 44 (2003), p.6725.

[4] Y. Huang and C.M. Lieber: Pure Appl. Chem. Vol. 76 (2004), p.2051 and refs. therein.

[5] K.J. Ziegler, B. Polyakov, J.S. Kulkarni, T.A. Crowley, K.M. Ryan, M.A. Morris, D. Erts and J.D. Holmes: J. Mat. Chem. Vol. 14 (2004), p.585.

[6] D. Erts, B. Polyakov, B. Daly, M.A. Morris, S. Ellingboe, J. Boland and J.D. Holmes: J. Phys. Chem. B Vol. 110 (2006), p.820.

[7] G. Krausch and R. Magerle: Adv. Mats. Vol. 14 (2002), p.1579; T. Liu, C. Burger and B. Chu: Prog. Polymer Sci. Vol. 28 (2003), p.5.

[8] T. Thurn-Albrecht, J. Schotter, G.A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C.T. Black, M.T. Tuominen and T.P. Russell: Science Vol. 290 (2000), p.2126.

DOI: 10.1126/science.290.5499.2126

[9] D. Sundrani, S.B. Darling and S.J. Sibener: Langmuir Vol. 20 (2004), p.5091.

[10] C.T. Black: Applied Physics Letters Vol. 87 (2005), p.163116.

[11] H-C Kim and T.P. Russell: J. of Poly. Sci. B: Poly. Phys. Vol. 39 (2001), p.663.

[12] K.Y. Suh, Y.S. Kim and H.H. Lee: J. Chem. Phys. Vol. 108 (1998), p.1253.

[13] M.W. Matsen and M. Schick: Phys. Rev. Lett. Vol. 72 (1994), p.2660.

[14] E.W. Edwards, M.P. Stoykovich, H.H. Solak and P.F. Nealey: Macromolecules Vol. 39 (2006), p.3598 and references therein.

[15] P.J. Cole, R.F. Cook and C.W. Macosko: Macromolecules Vol. 36 (2003), p.2808.

[16] I.W. Hamley: Physics of Block Copolymers (Oxford University Press, Oxford 1998).

[17] R.A. Segalaman: Mats. Sci. Eng. Vol. 48 (2005), p.191.

[18] I.W. Hamley: Developments in Block Copolymer Science and Technology in Introduction to Block Copolymers, Ed. I.W. Hamley (John Wiley and Sons, Chichester 2004).

DOI: 10.1002/0470093943.ch1

[19] Polymer handbook, Fourth edition, Eds. J. Brandrup, E.H. Immergut, E.A. Grulke (WileyInterscience, New York 1999).

[20] L.A. Utracki: J. Poly. Sci. B Vol. 42 (2004), p.2909.

[21] K.K. Chee: Malaysian J. Chem. Vol. 7 (2005), p.57.

[22] T.A. Mykhaylyk, S. Collins, C. Jani and I.W. Hamley: Eur. Poly. Journal Vol. 40 (2004), p.1715.

[23] T. Xu, H-C. Kim, J. De Rouchey, C. Seney, C. Levesque, P. Martin, C. M. Stafford and T. P. Russell: Polymer Vol. 42 (2001), p.9091.

Fetching data from Crossref.
This may take some time to load.