Hydrogen in Metallic Nanostructures

Abstract:

Article Preview

Features of hydrogen nanostructure synthesis are described as applied to metals (Mg and Pd) and intermetallics (Mg2Ni, FeTi and LaNi5). Attention is focused on the high-energy ball milling as a universal method for hydrogen nanostructure preparation. The effect of crystallite size, absorption/desorption properties of Pd - H2, Mg2Ni - H2, TiFe - H2 and Mg - H2 systems are characterized in detail. Structural features and some physical properties of nanohydrides studied by different independent characterization methods are considered.

Info:

Periodical:

Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković

Pages:

327-334

Citation:

R.A. Andrievski "Hydrogen in Metallic Nanostructures", Materials Science Forum, Vol. 555, pp. 327-334, 2007

Online since:

September 2007

Authors:

Export:

Price:

$38.00

[1] W. Mueller, J.P. Blackledge and G.G. Libowitz: Metal Hydrides (Academic Press, New York 1968).

[2] E.G. Maksimov and O.A. Pankratov: Uspekhi Fizicheskich Nauk Vol. 116 (1975), p.335. (Engl. transl. ).

[3] R.A. Andrievski and Ja.S. Umanski: Interstitial Phases (Nauka, Moscow 1977) (in Russ. ).

[4] Hydrogen in Metals I. Basic Properties (Eds. G. Alefeld and J. Volkl) (Springer Verlag, Berlin 1978).

[5] P.V. Gel'd, R.A. Riabov and L.P. Mokhracheva: Hydrogen and Physical Properties of Metals and Alloys (Nauka, Moscow 1985) (in Russ. ).

[6] R.A. Andrievski: Materials Science of Hydrides (Metallurgia, Moscow 1986) (in Russ. ).

[7] R.C. Bowman Jr. and B. Fultz: MRS Bulletin. Vol. 27 (2002), p.688.

[8] R.A. Andrievski: J. Mater. Sci. Vol. 32 (1997), p.4463.

[9] A. Zuttel and Sh. -I. Orimo: MRS Bulletin. Vol. 27 (2002), p.705.

[10] B. Bogdanovic and G. Sandrock. MRS Bulletin. Vol. 27 (2002), p.712.

[11] Proceedings of the 9 th International Synposium on Metal-Hydrogen Systems, Fundamentals and Applications (MH 2004) (Eds. H. Fiegel, O.J. Zogal and V. Yartys). J. Alloys and Comp. Vol. 404-406 (2005), p.1.

[12] A. Stepanov, E. Ivanov, I. Kostachuk and V. Boldyrev: J. Less-Common Met. Vol. 131 (1987), p.89.

[13] L. Zaluski, A. Zaluska and J.O. Strom-Olsen: J. Alloys Comp. Vol. 217 (1995), p.245.

[14] R. Janot, F. Cuevas, M. Latroche and A. Percheron-Guegan: Intermetallics Vol. 14 (2006), p.163.

DOI: https://doi.org/10.1016/j.intermet.2005.05.003

[15] S. Doppiu, P. Solsona, T. Spassov et al.: J. Alloys Comp. Vol. 404-406 (2005), p.27.

[16] O. Friedrichs, F. Aguey-Zinsou and J.R. Ares Fernandez: Acta Mater. Vol. 54 (2006), p.105.

[17] S. Li, R. Varin O. Morozova and T. Khomenko: J. Alloys Comp. Vol. 384 (2004), p.384.

[18] L. Zaluski, A. Zaluska, P. Tessier and J.O. Strom-Olsen: J. Mater. Sci. Vol. 31 (1996), p.695.

[19] T. Kuji, Y. Matsumura, H. Uchida and T. Aizawa: J. Alloys Comp. Vol. 330-332 (2002), p.718.

[20] J. Ares, F. Cuevas and A. Percheron-Guegan: Acta Mater. Vol. 53 (2005), p.2157.

[21] R.A. Andrievski, B.P. Tarasov, I.I. Korobov et al.: Int. J. Hydr. Energy Vol. 21 (1996), p.949.

[22] R.A. Varin, T. Czuiko and Z. Wronski: Nanotechnology Vol. 17 (2006), p.3856.

[23] W.H. Shinn, S.H. Yang, W.A. Goddard III and J.K. Kang: Appl. Phys. Lett. Vol. 88 (2006), p.053111.

[24] J.W. Hanneken, D.B. Baker, M.S. Conradi and J.A. Eastman: J. Alloys Comp. Vol. 330-332 (2002), p.714.

[25] K. Itoh, H. Sasaki, H.T. Takeshita et al.: J. Alloys Comp. Vol. 404-406 (2005), p.95.

[26] A.V. Gapontsev and V.V. Kondrat'ev: Physics - Uspekhi Vol. 46 (2003), p.1077 (Engl. transl. ).

[27] A.V. Gapontsev and V.V. Kondrat'ev: Nanotechnology and Physics of Functional Nanocrystalline Materials (Ural Region Division RAS, Ekaterinburg 2005) (in Russ. ).

[28] M. Au: Mater. Sci. Eng. B Vol. 117 (2005), p.37.

[29] N.V. Mushnikov, T. Goto, V.S. Gaviko and N.K. Zaikov: J. Alloys Comp. Vol. 292 (1999), p.51.

[30] B. Devi, A.S. Banthia and I.P. Jain: Int. J. Hydr. Energy Vol. 29 (2004), p.1289.

[31] L.Z. Ouyang, H. Wang, M. Zhu et al.: J. Alloys Comp. Vol. 404-406 (2005), p.485.

Fetching data from Crossref.
This may take some time to load.