Hydrogen in Metallic Nanostructures


Article Preview

Features of hydrogen nanostructure synthesis are described as applied to metals (Mg and Pd) and intermetallics (Mg2Ni, FeTi and LaNi5). Attention is focused on the high-energy ball milling as a universal method for hydrogen nanostructure preparation. The effect of crystallite size, absorption/desorption properties of Pd - H2, Mg2Ni - H2, TiFe - H2 and Mg - H2 systems are characterized in detail. Structural features and some physical properties of nanohydrides studied by different independent characterization methods are considered.



Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković




R.A. Andrievski "Hydrogen in Metallic Nanostructures", Materials Science Forum, Vol. 555, pp. 327-334, 2007

Online since:

September 2007





[1] W. Mueller, J.P. Blackledge and G.G. Libowitz: Metal Hydrides (Academic Press, New York 1968).

[2] E.G. Maksimov and O.A. Pankratov: Uspekhi Fizicheskich Nauk Vol. 116 (1975), p.335. (Engl. transl. ).

[3] R.A. Andrievski and Ja.S. Umanski: Interstitial Phases (Nauka, Moscow 1977) (in Russ. ).

[4] Hydrogen in Metals I. Basic Properties (Eds. G. Alefeld and J. Volkl) (Springer Verlag, Berlin 1978).

[5] P.V. Gel'd, R.A. Riabov and L.P. Mokhracheva: Hydrogen and Physical Properties of Metals and Alloys (Nauka, Moscow 1985) (in Russ. ).

[6] R.A. Andrievski: Materials Science of Hydrides (Metallurgia, Moscow 1986) (in Russ. ).

[7] R.C. Bowman Jr. and B. Fultz: MRS Bulletin. Vol. 27 (2002), p.688.

[8] R.A. Andrievski: J. Mater. Sci. Vol. 32 (1997), p.4463.

[9] A. Zuttel and Sh. -I. Orimo: MRS Bulletin. Vol. 27 (2002), p.705.

[10] B. Bogdanovic and G. Sandrock. MRS Bulletin. Vol. 27 (2002), p.712.

[11] Proceedings of the 9 th International Synposium on Metal-Hydrogen Systems, Fundamentals and Applications (MH 2004) (Eds. H. Fiegel, O.J. Zogal and V. Yartys). J. Alloys and Comp. Vol. 404-406 (2005), p.1.

[12] A. Stepanov, E. Ivanov, I. Kostachuk and V. Boldyrev: J. Less-Common Met. Vol. 131 (1987), p.89.

[13] L. Zaluski, A. Zaluska and J.O. Strom-Olsen: J. Alloys Comp. Vol. 217 (1995), p.245.

[14] R. Janot, F. Cuevas, M. Latroche and A. Percheron-Guegan: Intermetallics Vol. 14 (2006), p.163.

DOI: 10.1016/j.intermet.2005.05.003

[15] S. Doppiu, P. Solsona, T. Spassov et al.: J. Alloys Comp. Vol. 404-406 (2005), p.27.

[16] O. Friedrichs, F. Aguey-Zinsou and J.R. Ares Fernandez: Acta Mater. Vol. 54 (2006), p.105.

[17] S. Li, R. Varin O. Morozova and T. Khomenko: J. Alloys Comp. Vol. 384 (2004), p.384.

[18] L. Zaluski, A. Zaluska, P. Tessier and J.O. Strom-Olsen: J. Mater. Sci. Vol. 31 (1996), p.695.

[19] T. Kuji, Y. Matsumura, H. Uchida and T. Aizawa: J. Alloys Comp. Vol. 330-332 (2002), p.718.

[20] J. Ares, F. Cuevas and A. Percheron-Guegan: Acta Mater. Vol. 53 (2005), p.2157.

[21] R.A. Andrievski, B.P. Tarasov, I.I. Korobov et al.: Int. J. Hydr. Energy Vol. 21 (1996), p.949.

[22] R.A. Varin, T. Czuiko and Z. Wronski: Nanotechnology Vol. 17 (2006), p.3856.

[23] W.H. Shinn, S.H. Yang, W.A. Goddard III and J.K. Kang: Appl. Phys. Lett. Vol. 88 (2006), p.053111.

[24] J.W. Hanneken, D.B. Baker, M.S. Conradi and J.A. Eastman: J. Alloys Comp. Vol. 330-332 (2002), p.714.

[25] K. Itoh, H. Sasaki, H.T. Takeshita et al.: J. Alloys Comp. Vol. 404-406 (2005), p.95.

[26] A.V. Gapontsev and V.V. Kondrat'ev: Physics - Uspekhi Vol. 46 (2003), p.1077 (Engl. transl. ).

[27] A.V. Gapontsev and V.V. Kondrat'ev: Nanotechnology and Physics of Functional Nanocrystalline Materials (Ural Region Division RAS, Ekaterinburg 2005) (in Russ. ).

[28] M. Au: Mater. Sci. Eng. B Vol. 117 (2005), p.37.

[29] N.V. Mushnikov, T. Goto, V.S. Gaviko and N.K. Zaikov: J. Alloys Comp. Vol. 292 (1999), p.51.

[30] B. Devi, A.S. Banthia and I.P. Jain: Int. J. Hydr. Energy Vol. 29 (2004), p.1289.

[31] L.Z. Ouyang, H. Wang, M. Zhu et al.: J. Alloys Comp. Vol. 404-406 (2005), p.485.

Fetching data from Crossref.
This may take some time to load.