Ion Implantation Induced Modifications in Reactively Sputtered Cr-N Layers on Si Substrates


Article Preview

We present a study of the micro-structural changes induced in Cr-N layers by irradiation with argon ions. The layers were deposited by reactive ion sputtering on (100) Si wafers, to a thickness of 240-280 nm, at different nitrogen partial pressures and different substrate temperatures. The samples were subsequently irradiated with 120 keV Ar+, to 1x1015 and 1x1016 ions/cm2. Structural characterization was performed with Rutherford backscattering spectroscopy, x-ray diffraction analysis and transmission electron microscopy, and we also did electrical resistivity measurements on the samples. It has been found that the layers grow in the form of a polycrystalline columnar structure, with a columnar width of a few tens of nm. The layer composition, Cr2N or CrN, strongly depends on the nitrogen partial pressure during deposition. Ion irradiation induces local micro-structural changes, formation of nano-particles and defects, though the structures retain their polycrystalline nature. The induced crystalline defects yield an increase of electrical resistivity after ion irradiation.



Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković




M. Novaković et al., "Ion Implantation Induced Modifications in Reactively Sputtered Cr-N Layers on Si Substrates", Materials Science Forum, Vol. 555, pp. 35-40, 2007

Online since:

September 2007




[1] A.R. Gillet, A. Gaucher and J.P. Terrat: Thin Solid Films Vol. 108 (1983), p.165.

[2] U. Wiklund, M. Bromark, M. Larsson, P. Hedenqvist and S. Hogmark: Surface and Coatings Tehnology Vol. 91 (1997), p.57.

DOI: 10.1016/s0257-8972(96)03123-4

[3] C. Nouveau, M.A. Djouadi, O. Banakh, R. Sanjinés and F. Lévy: Thin Solid Films Vol. 398 (2001), p.490.

DOI: 10.1016/s0040-6090(01)01435-3

[4] V.M. Vishnyakov, V.I. Bachurin, K.F. Minnebaev, R. Valizadeh, D.G. Teer, J.S. Colligon, V.V. Vishnyakov and V.E. Yurasova: Thin Solid Films Vol. 497 (2006), p.189.

DOI: 10.1016/j.tsf.2005.05.005

[5] C. Constantin, M.B. Haider, D. Ingram and A.R. Smith: Appl. Phys. Lett. Vol. 85 (2004), p.26.

[6] D. Gall, C.S. Shin, R.T. Spila, M. Odén, M.J.H. Senna, J.E. Greene and I. Petrov: J. Appl. Phys. Vol. 91 (2002), p.3589.

[7] E. Canu, L. Martinez, J. Simancas, F.J. Perez-Trujillo, C. Gomez and J.M. Bastidas: Surface and Coatings Technology Vol. 200 (2006), p.5123.

[8] Y.P. Sharkeev, S.J. Bull, A.J. Perry, M.L. Klingenberg, S.V. Fortuna, M. Michler, R.R. Manory and I.A. Shulepov: Surface and Coatings Technology Vol. 200 (2006), p.5915.

DOI: 10.1016/j.surfcoat.2005.09.010

[9] J.F. Ziegler, J.P. Biersack and U. Littmark: The Stopping and Range of Ions in Solids (Pergamon, New York 1985).

[10] M. Uhrmacher, K. Pampus, F.J. Bergmeister, D. Purschke and K. -P. Lieb: Nucl. Inst. Meth. B Vol. 9 (1995), p.234.

[11] N.P. Barradas, C. Jeynes and R.P. Webb: Appl. Phys. Lett. Vol. 71 (1997), p.291.

[12] M. Novaković, M. Popović, D. Peruško, V. Milinović, I. Radović, M. Mitrić and M. Milosavljević: Nucl. Inst. Meth. B (in press).

Fetching data from Crossref.
This may take some time to load.