High Surface and High Nanoporosity Boron Nitride Adapted to Hydrogen Sequestration

Abstract:

Article Preview

High surface area nanoporous powders of hexagonal boron nitride (h-BN) have been prepared from molecular precursors to be used for hydrogen sequestration. The more promising samples were obtained using a precursor derived from trichloroborazine (TCB). The precursor was first reacted with ammonia at room temperature leading to the molecular complex Cl3B3N3H3, 6 NH3 which was heated up to 650 °C under ammonia and then up to 1000 °C under nitrogen, giving rise to a high reactive h-BN powder. This crude powder was stabilised by an annealing up to 1800 °C under nitrogen atmosphere leading to a very stable compound exhibiting a specific area of more than 300 m2·g-1 and presenting a very specific nanometric spherical texture. Some samples were doped with platinum (about 1 wt.%) to enhance the activity of pure h-BN using an original one step synthesis route starting from a mixture of BN and Pt precursors. Attempts to sequester hydrogen into these powders were made successfully at -196 °C under 10 MPa, but the stored amount was only about 0.3 wt.% and the platinum added BN powders did not lead to an enhancement of the storage capacity.

Info:

Periodical:

Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković

Pages:

355-362

Citation:

L. Laversenne et al., "High Surface and High Nanoporosity Boron Nitride Adapted to Hydrogen Sequestration", Materials Science Forum, Vol. 555, pp. 355-362, 2007

Online since:

September 2007

Export:

Price:

$38.00

[1] A. Züttel: Mater. Today Vol. 6(9) (2003), p.24.

[2] L. Schlapbach and A. Züttel: Nature Vol. 414 (2001), p.353.

[3] G. Sandrock and R.C. Bowman Jr: J. Alloys Comp. Vol. 356-357 (2003), p.794.

[4] R. Chahine and T. Bose: Int. J. Hydrogen Energy Vol. 19 (1994), p.161.

[5] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben: Nature Vol. 386 (1997), p.377.

DOI: https://doi.org/10.1038/386377a0

[6] F. Lamari Darkrim, P. Malbrunot and P. Tartaglia: Int. J. Hydrogen Energy Vol. 27 (2002), p.193.

[7] M.G. Nijkamp, J.E.M. Raaymakers, A.J. Van Dillen and K.P. De Jong: Appl. Phys A Vol. 72 (2001), p.619.

[8] R. Ma, Y. Bando, H. Zhu, T. Sato, C. Xu and D. Wu: J. Am. Chem. Soc. Vol. 124 (2002), p.7672.

[9] R.T. Paine and C.K. Narula: Chem. Rev. Vol. 90 (1990), p.73.

[10] D.A. Lindquist, T.T. Borek, S.J. Kramer, C.K. Narula, G. Johnston, R. Schaeffer, D.M. Smith and R.T. Paine: J. Am. Ceram. Soc. Vol. 73 (1990), p.757.

[11] T. Matsuda: J. Mat. Sci. Vol. 24 (1989), p.2353.

[12] J.A. Perdigon-Melon, A. Auroux, C. Guimon and B. Bonnetot: J. Solid State Chem. Vol. 177(2) (2004), p.609.

[13] B.G. Demczyk, J. Cumings, A. Zettl and R.O. Ritchie: Applied Physics Letters Vol. 78(18) (2001), p.2772.

[14] M. Houdayer, J. Spitz and D. Tran Van: French Pat. N°81 22163, 1981; U.S. Pat. N°4 472 454, (1984).

[15] K. Niedenzu and J.W. Dawson: J. Am. Chem. Soc. Vol. 81 (1959), p.3561.

[16] Y. Kimura, Y. Kubo and N. Hayashi: J. Inorg. Organomet. Polym. Vol. 2 (1992), p.231.

[17] J. Thomas, N.E. Weston and T.E. O'Connor: J. Am. Chem. Soc. Vol. 84 (1962), p.4619.

[18] F. Chassagneux, T. Epicier, P. Toutois, P. Miele, C. Vincent, and H. Vincent: J. Eur. Ceram. Soc. Vol. 22 (2002), p.2415.