A Unified Decoherence-Based Model of Microparticles in a Solution


Article Preview

The complex behavior of microparticles in a solution calls for different theoretical backgrounds. Here, we follow the line of two, recently developed theories on individuality, on the one hand, and conformational transitions of macromolecules in a solution, on the other. Given as separate theories, the two models may raise certain controversy in respect to their mutual consistency. Needless to say, their mutual consistency is necessary for the validity of the theories both in a general context as well as in search for a unified physico/chemical picture concerning the microparticles in a solution dynamics. We point out the consistency of these theories based on the definition of a molecule through its constituent subsystems (e.g. the center-of-mass and the “conformation” subsystems).



Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković




J. Jeknić et al., "A Unified Decoherence-Based Model of Microparticles in a Solution", Materials Science Forum, Vol. 555, pp. 405-410, 2007

Online since:

September 2007




[1] H. Primas: Chemistry, Quantum Mechanics and Reductionism, Perspectives in Theoretical Chemistry (Springer, Berlin 1983).

[2] A. Amann: Synthese Vol. 97 (1993), p.125.

[3] C. Levinthal: J. Chem. Phys. Vol. 65 (1968), p.44.

[4] M. Dugić: Europhys. Lett. Vol. 60 (2002), p.7.

[5] D. Raković, M. Dugić and M. Plavšić: Mater. Sci. Forum Vol. 453-454 (2004), p.521.

[6] M. Dugić, D. Raković and M. Plavšić: in Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering, Eds. A. Spasić and J-P. Hsu (Taylor & Francis CRC Press, Boca Raton, USA 2005).

DOI: https://doi.org/10.1201/9781420027662.ch9

[7] M. Dugić: Quantum Computers & Computing Vol. 1 (2000), p.102.

[8] Throughout the paper, by semiclassical", we do not assume the limit 0→h . Rather, we use this term as a synonym for the "approximately classical.

[9] G. Jona-Lasinio and P. Claverie: Prog. Theor. Phys. Suppl. Vol. 86 (1986), p.54.

[10] R. Omnes: The Interpretation of Quantum Mechanics (Princeton Univ. Press, Princeton 1994).

[11] B. Brezger, L. Hackermüller, S. Uttenthaler, J. Petschinka, M. Arndt and A. Zeilinger: Phys. Rev. Lett. Vol. 88 (2002), p.100404.

DOI: https://doi.org/10.1103/physrevlett.88.100404

[12] L. Hackermüller, S. Uttenthaler, K. Hornberger, E. Reiger, B. Brezger, A. Zeilinger and M. Arndt: Phys. Rev. Lett. Vol. 91 (2003), p.090408.

DOI: https://doi.org/10.1103/physrevlett.91.090408

[13] Č. Brukner, V. Vedral and A. Zeilinger: Phys. Rev. A Vol. 73 (2006), p.012110.

[14] W. H. Zurek: Prog. Theor. Phys. Vol. 89 (1993), p.281.

[15] W. H. Zurek: Phys. Today Vol. 44 (1991), p.36.

[16] M. Brune, E. Hagley, J. Dreyer, X. Maître, A. Maali, C. Wunderlich, J. M. Raimond and S. Haroche: Phys. Rev. Lett. Vol. 77 (1996), p.4887.

DOI: https://doi.org/10.1103/physrevlett.77.4887

[17] H. Amann, B. Gray, I. Shvarchuck and N. Christensen: Phys. Rev. Lett. Vol. 80 (1998), p.4111.

[18] L. Hackermüller, K. Hornberger, B. Brezger, A. Zeilinger and M. Arndt: Nature Vol. 427 (2004), p.711.

[19] P. Grigolini: Quantum Mechanical Irreversibility and Measurement (World Scientific, Singapore 1993).

[20] The time average of the off-diagonal terms reads: ( ) ( )* 0 1/ exp{ } 0 T i j i j T C C i tδ δ− − = ∫ , with the constraint { }( ) 1 sup i i T δ δ − >> −.

[21] Only certain degrees of freedom of a system decohere (e. g. the center-of-mass coordinates). The rest remain intact by the environment, thus maintaining their genuine-quantum mechanical-nature.

[22] M. Dugić and J. Jeknić: Int. J. Theor. Phys. (in press).

[23] P. Zanardi, D. A. Lidar and S. Lloyd: Phys. Rev. Lett. Vol. 92 (2004), p.060402.

[24] H. Barnum, G. Ortiz, R. Somma and L. Viola: Eprint arXiv quant-ph/0506099.