Alginate Microbeads as Cell Support for Cartilage Tissue Engineering: Bioreactor Studies


Article Preview

Alginate was shown to be a suitable support for entrapment and cultivation of chondrocytes and bone marrow stromal cells, which under appropriate in vitro conditions synthesized cartilaginous components. The main limitation in these cultures may be low rates of mass transport through the alginate matrix governed by diffusion. In this study, we have designed and utilized a bioreactor system based on a packed bed of alginate beads with immobilized chondrogenic cells. Continuous medium perfusion provided convective mass transport through the packed bed, while small diameters of beads (2.5 mm and down to 500 μm) ensured short diffusion distances to the immobilized cells. During up to 5 weeks of cultivation, the cells synthesized extracellular matrix components merging beads together and indicating potentials of this system for precise regulation of the cellular microenvironment in cartilage tissue engineering.



Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković




B. Obradović et al., "Alginate Microbeads as Cell Support for Cartilage Tissue Engineering: Bioreactor Studies", Materials Science Forum, Vol. 555, pp. 417-422, 2007

Online since:

September 2007




[1] J.A. Buckwalter and H.J. Mankin: Instr. Course Lect. Vol. 47 (1998), p.487.

[2] F.S. Chen, S.R. Frenkel and P.E. Di Cesare: Am. J. Orthop. Vol. 28 (1999), p.88.

[3] R. Langer and J.P. Vacanti: Science Vol. 260 (1993), p.920.

[4] R.M. Nerem: Principles of Tissue Engineering (Academic Press, San Diego, USA 2000), p.9.

[5] L.E. Freed and G. Vunjak-Novakovic: The Biomedical Engineering Handbook (Boca Raton: CRC Press 2000), p.124.

[6] L.E. Freed and G. Vunjak-Novakovic: Principles of Tissue Engineering (Academic Press, San Diego, USA 2000), p.143.

[7] B. Obradovic, M. Radisic and G. Vunjak-Novakovic: Focus on Biotechnology, Volume 8b: Applications of Cell Immobilisation Biotechnology (Springer, Berlin, Heidelberg 2005), p.99.


[8] B. Sharma and J. Elisseeff: Annals Biomed. Eng. Vol. 32 (1) (2004), p.148.

[9] K. Masuda, R. Sah, M. Hejna and E.J. -M.A. Thonar: J. Orthop. Res. Vol. 21 (2003), p.139.

[10] T. Grunder, C. Gaissmaier, S. Fritz, R. Stoop, P. Hortschansky, J. Mollenhauer and W.K. Aicher: Osteoarthrytis & Cartilage Vol. 12 (7) (2004), p.559.

[11] M. Weber, A. Steinert, A. Jork, A. Dimmler, F. Thurmer, N. Schutze, C. Hendrich and U. Zimmermann: Biomaterials Vol. 23 (2002), p. (2003).

[12] B. Obradovic, D. Bugarski, M. Petakov, G. Jovcic, N. Stojanovic, B. Bugarski and G. VunjakNovakovic: Mat. Sci. Forum Vol. 453-454 (2004), p.549.


[13] D. Bugarski, B. Obradovic, M. Petakov, G. Jovcic, N. Stojanovic and B. Bugarski: Mat. Sci. Forum Vol. 494 (2005), p.525.


[14] M.D. Buschmann, Y.A. Gluzband, A.J. Grodzinsky, J.H. Kimura and E.B. Hunziker: J. Orthop. Res. Vol. 10 (1992), p.745.

[15] G. Vunjak-Novakovic, B. Obradovic, I. Martin, P. Bursac, R. Langer and L.E. Freed: Biotechnol Prog. Vol. 14 (1998), p.193.