Synthesis and Characterization of Polyacriflavine


Article Preview

New functional polymeric, semiconducting materials were synthesized by chemical oxidative polymerization of acriflavine hydrochloride in aqueous solution at room temperature, using ammonium peroxydisulfate as an oxidant. Polymerization products were characterized by gelpermeation chromatography (GPC), FTIR spectroscopy, scanning electron microscopy (SEM) and conductivity measurements. The influence of the oxidant/monomer molar ratio on the molecular structure, molecular weight distribution and the electrical conductivity of polyacriflavines was studied. Molecular weights approach a maximum value of ~20000. The polyacriflavine prepared by using oxidant/monomer molar ratio 1.25 shows the conductivity of 2.8 × 10–7 S cm–1. New substitution pattern shown by FTIR spectroscopic analysis combined with MNDO-PM3 semiempirical quantum chemical calculations revealed N─C2 coupling reactions as dominant. The formation of phenazine rings in ladder structured polymerization products was observed by FTIR spectroscopy. The existence of a certain polyacriflavine crystalline structure was suggested from the SEM micrographs.



Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković




B. Marjanović et al., "Synthesis and Characterization of Polyacriflavine", Materials Science Forum, Vol. 555, pp. 503-508, 2007

Online since:

September 2007




[1] X. -G. Li, M. -R. Huang and W. Duan: Chem. Rev. Vol. 102 (2002), p.2925.

[2] G. Ćirić-Marjanović, B. Marjanović, M. Trchová and P. Holler: Mater. Sci. Forum Vol. 494 (2005), p.357.


[3] J.J. P. Stewart: J. Comput. Chem. Vol. 10 (1989), p.209; ibid p.221.

[4] G. Ćirić-Marjanović, B. Marjanović, V. Stamenković, Ž. Vitnik, V. Antić and I. Juranić: J. Serb. Chem. Soc. Vol. 67 (2002), p.867.


[5] G. Ćirić-Marjanović, B. Marjanović, I. Juranić, P. Holler, J. Stejskal and M. Trchová: Mater. Sci. Forum Vol. 518 (2006), p.405.


[6] G. Ćirić-Marjanović, M. Trchová, P. Matějka, P. Holler, B. Marjanović and I. Juranić: React. Funct. Polym. Vol. 66 (2006), p.1670.

[7] G. Ćirić-Marjanović, M. Trchová and J. Stejskal: Collect. Czech. Chem. Commun. Vol. 71 (2006), p.1407.

[8] J.J. P. Stewart: Quant. Chem. Prog. Exch. Vol. 10 (1990), p.86.

[9] U. Burkert and N.L. Allinger: Molecular Mechanics (American Chemical Society, Washington DC 1982).

[10] A. Klamt and G. Schüürmann: J. Chem. Soc. Perkin Trans. Vol. 2 (1993), p.799.

[11] M.B. Mitchell, G.R. Smith and W.A. Guillory: J. Chem. Phys. Vol. 75 (1981), p.44.

[12] K. Chiba, T. Ohsaka, Y. Ohnuki and N. Oyama: J. Electroanal. Chem. Vol. 219 (1987), p.117.

[13] G. Socrates: Infrared and Raman Characteristic Group Frequencies (John Wiley & Sons, New York 2001), pp.107-114, 157-165.

[14] D.L. Vien, N.B. Colthup, W.G. Fateley and J.G. Grasselli: The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules (Academic Press, Inc. San Diego 1991), p.169, 172, 284-288.


[15] L.J. Bellamy: The Infra-red Spectra of Complex Molecules (Richard Clay and Company, Ltd., Bungay, Suffolk 1962), pp.64-83.

[16] L. Eberson: Adv. Phys. Org. Chem. Vol. 18 (1982), p.79.

[17] CRC Handbook of Chemistry and Physics, Ed. D.R. Lide, 84th ed. (CRC Press, Boca Raton 2003), p.1221.