Microstructure and Microhardness in Current Annealed Fe65.5Cr4Mo4Ga4P12C5B5.5 Bulk Metallic Glass


Article Preview

The rods of Fe-based bulk metallic glasses with the nominal composition Fe65.5Cr4Mo4Ga4P12C5B5.5 were cast by melt injection into 1.5 and 1.8 mm diameter copper molds. The thermal stability, microstructure and crystallization behavior were investigated by differential scanning calorimetry, optical micrography and X-ray diffraction, respectively. The wide supercooled liquid region between crystallization temperature (Tx) and glass transition temperature (Tg) in the as-cast state Tx=Tx-Tg=60 K, as well as the high value of reduced glass transition temperature Trg=Tg/Tl=0.567 (Tl is liquidus temperature) approves enhanced thermal stability of the alloy against crystallization. In the as-cast “XRD-amorphous” state, microhardness HV1=742 was observed. Multistep current annealing thermal treatments were performed for structural relaxation. After applying high enough heating power per square area (PS ≥ 6 W/cm2), intensive crystallization of the samples characterized by appearance of several iron-metalloid compounds (Fe5C2, Fe3Ga4, Fe63Mo37 and Mo12Fe22C10) was observed. The microstructure changes after crystallization bring about differences in the microhardness values. The areas of still present amorphous matrix are with increased value HV1=876, but a remarkable decrease to HV1=323 was observed in precipitated crystallized zone that propagate along inner part of cylinders.



Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković




N. Mitrović et al., "Microstructure and Microhardness in Current Annealed Fe65.5Cr4Mo4Ga4P12C5B5.5 Bulk Metallic Glass", Materials Science Forum, Vol. 555, pp. 521-526, 2007

Online since:

September 2007




[1] A. Inoue and K. Hashimoto: Amorphous and Nanocrystalline Materials, Preparation, Properties and Application (Springer-Verlag, Berlin Heilderberg 2001).

[2] T. D. Shen, U. Harms and R. B. Schwartz: Mat. Sci. Forum Vol. 386-388 (2002), p.441.

[3] S. Roth, M. Stoica, J. Degmova, U. Gaitzch, J. Eckert and L. Schultz: J. Magn. Magn. Mater. Vol. 304 (2006), p.192.

[4] N. Mitrović, S. Roth, J. Eckert and C. Mickel: J. Phys. D: Appl. Phys. Vol. 35 (2002), p.2247.

[5] T.D. Shen and R.B. Schwartz: Appl. Phys. Lett. Vol. 75 (1999), p.49.

[6] M. Stoica, J. Eckert, S. Roth and L. Schultz: Mat. Sci. Eng. A Vol. 375-377 (2004), p.399.

[7] A. Inoue: Mater. Trans. Japan. Inst. Metals. Vol. 36 (1995), p.866.

[8] A. Inoue, T. Zhang and A. Takeuchi: Mat. Sci. Forum Vol. 269-272 (1998), p.855.

[9] A. Inoue: Bulk Amorphous Alloys (Trans Tech Publications, Uetikon-Zuerich 1999).

[10] N.S. Mitrović: Science of Sintering Vol. 30 Spec. Issue (1998), p.85.

[11] N.S. Mitrović, S.R. Djukić and S.B. Djurić: IEEE Trans. Magn. Vol. 36 (2000), p.3858.

[12] P. Allia, P. Tiberto, M. Barricco and F. Vinai: Appl. Phys. Lett. Vol. 63 (1993), p.2759.

[13] A. Takeuchi and A. Inoue: Mater. Trans. JIM Vol. 41 (2000), p.1372.

[14] F.R. Boer and D.G. Pettifor: Cohesion in Metals (Elsevier Science Publishers, B.V. Amsterdam 1988).

[15] M. Stoica, J. Eckert, S. Roth, L. Schultz, A.R. Yavari and A. Kvick: J. Metastable Nanocrystalline Mater. Vol. 12 (2002), p.77.

[16] Z.P. Lu, C.T. Liu and W.D. Porter: Appl. Phys. Lett. Vol. 83 (2003), p.2581.

[17] B. Shen and A. Inoue: Appl. Phys. Lett. Vol. 85 (2004), p.4911.

[18] M. Akiba, B. Shen and A. Inoue: Mater. Trans. Vol. 46 (2005), p.2773.

Fetching data from Crossref.
This may take some time to load.