The Effect of Temperature on the Magnetic Properties of the Electrochemically Obtained Ni92.8 Mo7.2 Powder Pressed at Different Pressures


Article Preview

The Ni92.8Mo7.2 alloy powder was obtained by electrochemical codeposition from an ammonium solution of NiSO4 and (NH4)6 Mo7O24 at j = 100 mA m-2, on a titanium cathode. DSC measurements and determination of the dependence of electrical resistivity on temperature did not reveal any changes in powder structure in the temperature range from 293 to 460 K. Therefore, in this range, there was no significant change in magnetic susceptibility either. Structural relaxation took place in the temperature interval from 460 to 560 K causing an increase in magnetic susceptibility. At temperatures higher than 570 K, magnetic susceptibility rapidly decreased. The Curie temperature of the powder was 660 K. With the increasing powder pressing pressure the magnetic susceptibility increased while the electric resistivity decreased. With the pressing pressure increase, the pore size was decreased and a better contact between powder particles was established. This caused electrical resistivity decrease and magnetic susceptibility increase.



Edited by:

Dragan P. Uskoković, Slobodan K. Milonjić and Dejan I. Raković




L. Ribić-Zelenović et al., "The Effect of Temperature on the Magnetic Properties of the Electrochemically Obtained Ni92.8 Mo7.2 Powder Pressed at Different Pressures", Materials Science Forum, Vol. 555, pp. 539-543, 2007

Online since:

September 2007




[1] T.R. Anantharaman: Aederman sorft (Trans. Tech., Switzerland 1984).

[2] H. Steeb and H. Warlimont: Rapidly Quenched Metals (Elsevier, Amsterdam 1985).

[3] L.A. Jakobson and J. Mc. Kittrik: Rapid Solidification Processing (Elsevier 1994).

[4] N.F. Motte and E.A. Davis: Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford 1979).

[5] Yu.A. Kunitsky, V.I. Lisov, T.L. Tsaregradskaya and O.V. Turkov: Sci. Sinter. Current Problems and New Trends (Beograd 2003), p.319.

[6] M.V. Sušić: J. Mat. Sci. Vol. 22 (1987), p.3011.

[7] M.V. Sušić and A.M. Maričić: Mat. Chem. and Phys. Vol. 19 (1988), p.517.

[8] A. Maričić, M. Spasojević, L. Rafailović, V. Milovanović and L. Ribić-Zelenović: Mater. Sci. Forum Vol. 453 (2004), p.411.

DOI: 10.4028/

[9] A.M. Maričić and M.M. Ristić: Sci. Sinter. Vol. 35 No. 1 (2003), p.31.

[10] M. Spasojević, A. Maričić and L. Rafailović: Sci. Sinter. Vol. 36 (2004), p.105.

[11] M.V. Sušić, A.M. Maričić and N.S. Mitrović: Sci. Sinter. Vol. 28 (1996), p.189.

[12] A.R. Despić and K.I. Popov: Modern Aspects of Electrochemistry, Vol. 7 (Plenum Press, New York 1972).

[13] N. Ibl: Helv. Chim. Acta Vol. 37 (1954), p.1149.

[14] K.I. Popov and M.G. Pavlović: in Modern Aspects of Electrochemistry, Eds. B.E. Conway, J. O'M. Bockris and R.E. White (Plenum, New York 1973), Vol. 24, pp.299-391.

[15] M.G. Pavlović, Lj.J. Pavlović, N.D. Nikolić and K.I. Popov: Mater. Sci. Forum Vol. 352 (2000), p.65.

[16] M.G. Pavlović, K.I. Popov and E.R. Stojiljković: Bull. of Electrochemistry Vol. 14 (1988), p.211.

[17] M.G. Pavlović, Lj.J. Pavlović, E.R. Ivanović, V. Radmilović and K.I. Popov: J. Serb. Chem. Soc. Vol. 66 (2001), p.923.

[18] M. Spasojević, A. Maričić, L. Ribić-Zelenović, L. Rafailović and B. Jordović: J. Appl. Electrochem. (in press).

[19] L. Ribić-Zelenović, L. Rafailović, M. Spasojević and A. Maričić: Sci. Sinter. Vol. 38 (2) (2006), p.145.

[20] H. Rietveld: J. Appl. Crystallogr. Vol. 2 (1969), p.65.

[21] J. Niedbala: Acta Metallurgica Slovaca Vol. 11 (2005), p.166.

[22] Y. Zeng, Z. Li, M. Ma and S. Zlou: Electrochem. Commun. Vol. 2 (2000), p.36.

[23] E.J. Podlaha and D. Landolt: J. Electrochem. Soc. Vol. 143 (1996), p.855.

[24] E.J. Podlaha and D. Landolt: J. Electrochem. Soc. Vol. 143 (1996), p.893.

[25] E.J. Podlaha and D. Landolt: J. Electrochem. Soc. Vol. 144 (1997), p.1672.

[26] L.S. Sanches, S.H. Dominigues, C.E.B. Marino and L.H. Mascaro: Electrochem. Commun. Vol. 6 (2004), p.543.

[27] E. Navarro-Flores, Z. Chong and S. Omanovic: J. Mol. Catal. Chem. Vol. 226 (2005), p.179.

[28] L. Arul Ray and V.K. Venkatesan: Int. J. Hydrogen Energy Vol. 13 (1982), p.215.

[29] J.Y. Huot: J. Electrochem. Soc. Vol. 136 (1989), p.32.

[30] Y. Zeng, S.W. Yao and H.T. Guo: Chin. J. Chem. Vol. 15 (1997), p.193.

[31] Y. Zeng, S.W. Yao and H.T. Guo: Platinum Surf. Fin. Vol. 82 (1995), p.64.

[32] K. Suzuki, H. Fudzimori and K. Yosamoto: Amorfnye metally (Metallurgiya, Moskva 1987).

[33] V.E. Egoruskin, N.V. Melnikova: Metalofizika Vol. 10(1) (1988), p.81.

[34] A.P. Spak, V.L. Karbovskij and A.N. Jaresko: Metalofizika i noveisie tehnologii Vol. 16(3) (1994), p.32.

[35] A.P. Spak and V.L. Karbovskij: Bliznij poredak i osobennosti elektronnoj strukturi v amorfnih metalliceskih splavah na osnove 3d metallov (KNMF, 1994), p.44.

[36] S. ðukić, R. Simeunović and A. Maričić: Sci. Sinter. Vol. 37(3) (2005), p.231.

[37] A. Kalezić-Glišović, L. Novaković, A. Maričić, D. Minić and N. Mitrović: Mater. Sci. Eng. B Vol. 131 (2006), p.45.

Fetching data from Crossref.
This may take some time to load.