Current Transport in Ti/Al/Ni/Au Ohmic Contacts to GaN and AlGaN


Article Preview

In this work, the structural and electrical properties of Ti/Al/Ni/Au contacts on n-type Gallium Nitride were studied. An ohmic behaviour was observed after annealing above 700°C. The structural analysis showed the formation of an interfacial TiN layer and different phases in the reacted layer (AlNi, AlAu4, Al2Au) upon annealing. The temperature dependence of the specific contact resistance demonstrated that the current transport occurs through thermoionic field emission in the contacts annealed at 600°C, and field emission after annealing at higher temperatures. By fitting the data with theoretical models, a reduction of the Schottky barrier from 1.21eV after annealing at 600°C to 0.81eV at 800°C was demonstrated, together with a strong increase of the carrier concentration at the interface. The reduction of the contact resistance upon annealing was discussed by correlating the structural and electrical characteristics of the contacts.



Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall




F. Iucolano et al., "Current Transport in Ti/Al/Ni/Au Ohmic Contacts to GaN and AlGaN", Materials Science Forum, Vols. 556-557, pp. 1027-1030, 2007

Online since:

September 2007




[1] F. Ren, J.C. Zolper: Wide Energy Bandgap Electronic Devices, World Scientific, Singapore, (2003).

[2] Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, H. Morkoç: Appl. Phys. Lett. Vol. 68 (1996), p.1672.

[3] A.N. Bright, P.J. Thomas, M. Weyland, D.M. Tricker, C.J. Humphreys, R. Davies: J. Appl. Phys. Vol. 89 (2001), p.3143.

[4] A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, S. N. Mohammad: J. Appl. Phys. Vol. 93 (2003), p.1087.

[5] E. F. Chor, D. Zhang, H. Gong, G. L. Chen, T. Y. F. Liew: J. Appl. Phys. Vol. 90 (2001), p.1242.

[6] J. K. Kim, H. W. Jang, J. L. Lee: J. Appl. Phys. Vol. 91 (2002), p.9214.

[7] C. Lu, H. Chen, X. Lv, X. Xie, S. N. Mohammad: J. Appl. Phys. Vol. 91 (2002), p.9218.

[8] P. Boguslawski, E. L. Briggs, J. Bernholc: Phys. Rev. B Vol. 51 (1995), p.17255.

[9] M. W. Fay, et al. : J. Appl. Phys. Vol. 96 (2004), p.5588.

[10] R. Khanna, S.J. Pearton, F. Ren, I. Kravchenko, C.J. Kao, G.C. Chi : Appl. Surf. Sci. Vol. 252 (2005), p.1826.

[11] D.K. Schroder, Semiconductor Material and Device Characterization, John Wiley & Sons, New York, (1998).

[12] A.Y.C. Yu: Solid State Electronics Vol. 13 (1970), p.239.

[13] F. A. Padovani, R. Stratton: Solid-State Electronics Vol. 9 (1966), p.695.

[14] F. Roccaforte, F. Lucolano, F. Giannazzo, A. Alberti, V. Raineri: Appl. Phys. Lett. Vol. 89 (2006), 022103.