Hot Electron Induced Current Collapse in AlGaN/GaN HEMTs


Article Preview

The mechanism of drain current collapse in AlGaN/GaN high electron mobility transistors (HEMTs) was investigated. Current collapse was clearly observed for TiO2 passivated HEMTs. However, no evidence of current collapse was apparent for SiNx passivated HEMTs. This suggests that AlGaN surface traps play a major role in current collapse. The experimental results were compared with numerical device simulation results. The device simulations were performed taking into account hot electron generation and deep traps at the AlGaN surface. The simulated drain current transients were consistent with the degradation and recovery behavior of the experimental results. These results indicate that current collapse is caused by the trapping of hot electrons in deep levels at the AlGaN surface.



Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall




A. Nakajima et al., "Hot Electron Induced Current Collapse in AlGaN/GaN HEMTs", Materials Science Forum, Vols. 556-557, pp. 1035-1038, 2007

Online since:

September 2007




[1] H. Hasegawa, T. Inagaki, S. Ootomo and T. Hashizume: J. Vac. Sci. Technol. B Vol. 21 (2001), p.1844.

[2] R. Vetury, N. Q. Zhang, S. Keller and U. K. Mishra: IEEE Trans. Electron Devices Vol. 48 (2001), p.560.

[3] P. B. Klein, S. C. Binari, K. Ikossi-Anastasiou, A. E. Wickenden, D.D. Koleske, R. L. Henry and D. S. Katzer: Electron. Lett. Vol. 37 (2001), p.661.

DOI: 10.1049/el:20010434

[4] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park, H. B. Kietrich, D. D. Koleske, A. E. Wichenden and R. L. Henry: IEEE Trans. Electron Devices Vol. 48 (2001), p.465.

DOI: 10.1109/16.906437

[5] T. N. Theis, B. D. Parker, P. M. Solomon and S. L. Wright: Appl. Phys. Lett. Vol. 49 (1986), p.1542.

[6] S. Yagi, M. Shimizu, M. Inada, Y. Yamamoto, G. Piao, H. Okumura, Y. Yano, N. Akutsu and H. Ohashi: Solid State Electronics Vol. 50 (2006), p.1057.

DOI: 10.1016/j.sse.2006.04.041

[7] Y. Apanovich, E. Lyumkis, B. Polsky, A. Shur and P. Blakey: IEEE Trans. Comput. -Aided Des. Vol. 13 (1994), p.702.

DOI: 10.1109/43.285243

[8] N. Braga, R. Mickevicius, R. Gaska, X. Hu, M. S. Shur, M. Asif Khan, G. Simin and J. Yang: J. Appl. Phys. (2004), p.6409.

[9] A. Y. Polyakov, N. B. Smirnov, A. V. Govorkov, V. N. Danilin, T. A. Zhukova, B. Luo, F. Ren, B. P. Gila, A. H. Onstine, C. R. Abernathy and S. J. Pearton: Appl. Phys. Lett. Vol. 83 (2003), p.2608.

DOI: 10.1063/1.1614839

[10] H. Ye, G. W. Wicks and P. M. Fauchet: Appl. Phys. Lett. Vol. 74 (1999), p.711.

[11] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy and L. F. Eastman: IEEE Electron Device Lett. Vol. 21 (2000), p.268.

[12] R. Coffie, D. Buttari, S. Heikman, S. Keller, A. Chini, L. Shen and U. K. Mishra: IEEE Electron Device Lett. Vol. 23 (2002), p.588.

DOI: 10.1109/led.2002.803764

[13] P. Kordoš, J. Bernát, M. Marso, H Lüth, F. Rampazzo, G. Tamiazzo, R. Pierobon and G. Meneghesso: Appl. Phys. Lett. Vol. 86 (2005), p.253511.

DOI: 10.1063/1.1953873

[14] G. Koley, V. Tilak, L. F. Eastman and M. G. Spencer: IEEE Trans. Electron Devices Vol. 50 (2003), p.886.

Fetching data from Crossref.
This may take some time to load.