Homoepitaxial Growth of Vanadium-Doped 4H-SiC Using Bis-Trimethylsilylmethane and Verrocene Precursors

Abstract:

Article Preview

The authors attempted to grow a semi-insulating SiC epitaxial layer by in-situ vanadium doping. The homoepitaxial growth of the vanadium-doped 4H-SiC layer was performed by MOCVD using the organo-silicon precursor, bis-trimethylsilylmethane (BTMSM, [C7H20Si2]) and the metal-organic precursor, bis-cyclopentadienylvanadium (Verrocene, [C10H10V]). Vanadium doping effect on crystallinity of epilayer was very destructive. Vanadium-doped epilayers grown on normal condition had various surface or crystal defects such as micropipes, polytype inclusions. But this crystallinity degradation was overcome by high growth temperature. For the measurement of the resistivity of the highly resistive vanadium-doped 4H-SiC epilayers, the authors used the on-resistance technique. Based on the measurements of the on-resistance of the epilayers using the current-voltage technique, it is shown that the residual donor concentration of the epilayers was decreased with increasing partial pressure of verrocene. The resistivity of the vanadium-doped 4H-SiC epilayer was about 107 /cm.

Info:

Periodical:

Materials Science Forum (Volumes 556-557)

Edited by:

N. Wright, C.M. Johnson, K. Vassilevski, I. Nikitina and A. Horsfall

Pages:

113-116

DOI:

10.4028/www.scientific.net/MSF.556-557.113

Citation:

H. K. Song et al., "Homoepitaxial Growth of Vanadium-Doped 4H-SiC Using Bis-Trimethylsilylmethane and Verrocene Precursors ", Materials Science Forum, Vols. 556-557, pp. 113-116, 2007

Online since:

September 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.